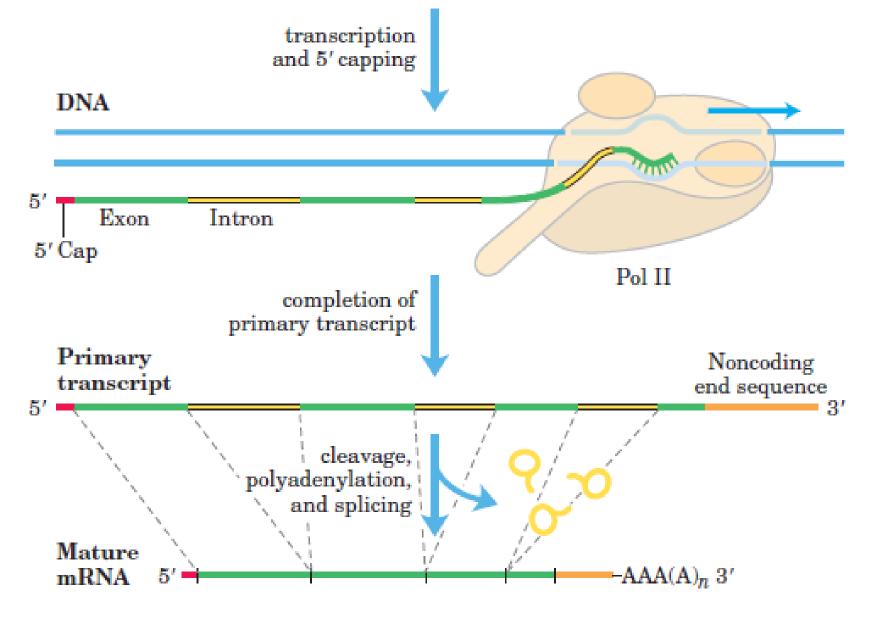
RNA Processing (Part-I)

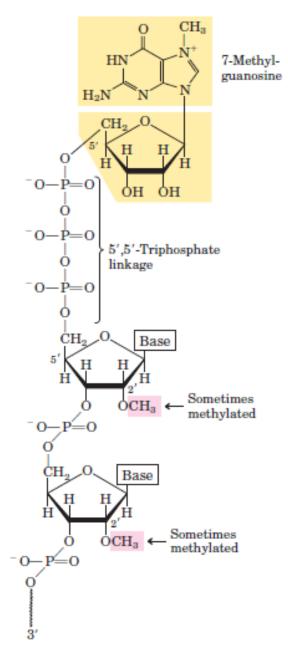

(BIOT 4006: Genetics and Molecular Biology)

Dr. Saurabh Singh Rathore Department of Biotechnology MGCU

RNA Processing

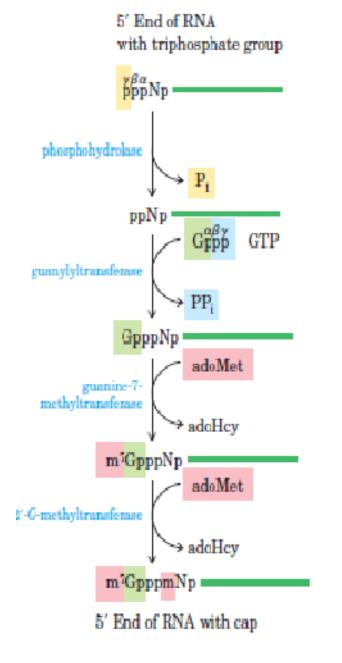
- Post synthetic RNA processing: in many bacterial RNAs
 in nearly all eukaryotic RNAs
- Enzymes involved: Proteins as well as RNAs (Ribozymes)
- Most extensive RNA processing occurs in: mRNA (eukaryotes) and tRNA (eukaryotes & bacteria)
- During splicing, the non coding introns are removed and continuous sequence of exons is achieved.

- End modifications in eukaryotic mRNAs: 5' capping
 3' polyadenylation
- The enzyme complexes carrying out these mRNA processing reactions are organized in association with each other organized in association with each other and with the phosphorylated CTD of Pol II.
- The complexes work in a manner that their functions affect each other.
- Proteins responsible for mRNA processing, transport of the transcript and its delivery to ribosomes for translation – function in a dynamic manner associated within an elaborate complex.


Outline of RNA Processing

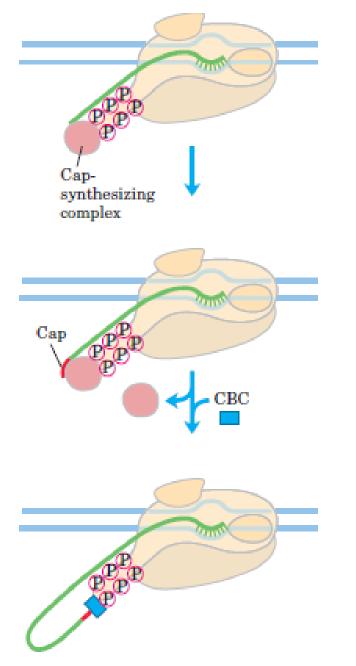
Maturation of mRNA involving the formation and processing of primary transcript in Eukaryotes (inside nucleus).

- 1. Addition of a 5' cap (shown in red color) occurs prior to the completion of primary transcript synthesis.
- 2. The last exon is followed by a non-coding sequence (shown in orange color).
- 3. Splicing can happen after /before the cleavage and polyadenylation steps.


- 5' cap, a residue of 7-methylguanosine linked to the 5'-terminal residue of the mRNA by an unusual 5',5'-triphosphate linkage.
- The 5' cap has a protective role against the ribonucleases which tend to cleave the mRNA.
- Another function of 5' cap is to bind with a cap-binding complex of proteins.
- The 5' cap also supports mRNA binding to ribosomes to fascilitate translation initiation.
- The formation of 5' cap is done by a GTP molecule condensing to a triphosphate present at 5' end of the transcript.

- Afterwards, guanine residue attached to the triphosphate is methylated at the N-7 position.
- The first and second nucleotides are mostly methylated at their respective 2' hydroxyl positions. Supply of methyl groups comes from S-adenosylmethionine.
- The above said reactions take place in the initial phase of transcription (after addition of 20-30 nucleotides).
- The RNA polymerase II CTD is associated with the three capping enzymes and 5' end of the transcript for 5' cap synthesis.
- After 5' cap synthesis completion, it is detached from the enzymes. This is fascilitated by the cap-binding complex.

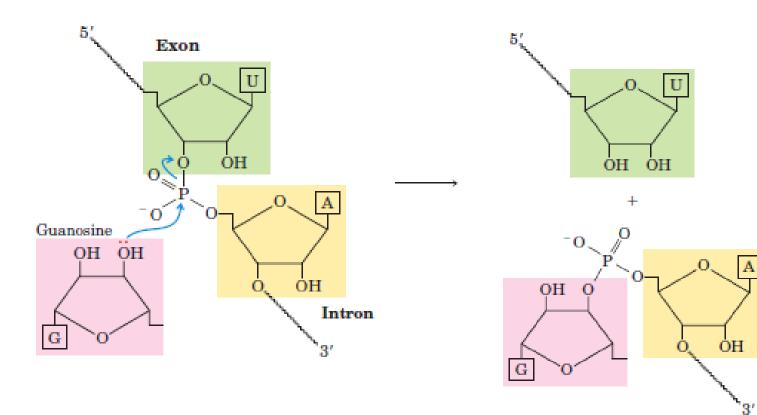
Synthesis of 5' cap of mRNA.


- 7-Methylguanosine is attached to the 5' end mRNA by a 5',5'triphosphate linkage.
- The first and second nucleotides are commonly methylated at 2' positions (shown in pink color).
- However, 2' methylation is absent in yeast m-RNAs.
- In case of Vertebrates only, methylation at 2' position is commonly present at the second nucleotide.

Synthesis of 5' cap of mRNA.

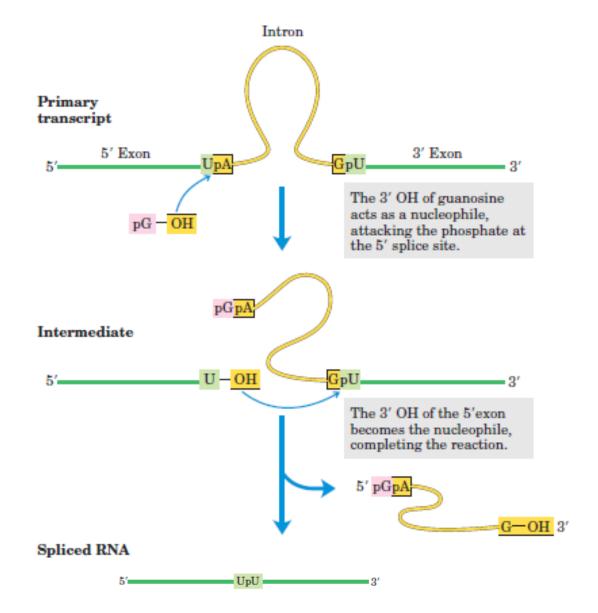
Four enzyme catalyzed steps in formation of 5' cap (adoHcy: Sadenosyl-homo-cysteine).

Reference: Lehninger Principles of Biochemistry Fourth Edition David L. Nelson & Michael M. Cox Chapter 26, Page 1008



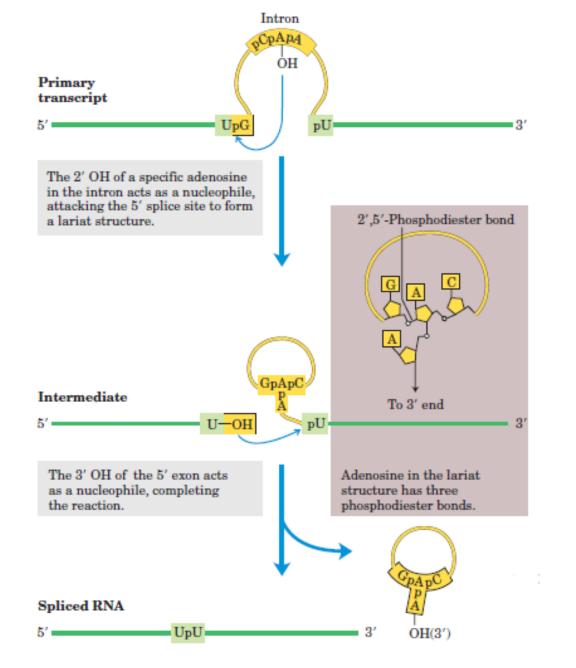
Synthesis of 5' cap of mRNA.

- Enzymes attached to the CTD of Pol II carryout the synthesis of 5'cap.
- The cap synthesizing complex is replaced by cap binding complex (CBC) and this facilitates tethering of the cap with CTD.


Reference: Lehninger Principles of Biochemistry Fourth Edition David L. Nelson & Michael M. Cox Chapter 26, Page 1008

- Living organisms contain four groups of introns.
- The first two groups, i.e. Group I and Group II introns are self splicing as they don't need any enzymes or ATP (to provide energy) for splicing.
- This self splicing takes place through two transesterification reactions.
- There is a nucleophilic attack of 2' or 3' hydroxyl on phosphorous and subsequent formation of a new phosphodiester bond.
- An energy balance is maintained as a phosphodiester bond is broken and a similar bond is formed.

Transesterification reaction in Group 1 introns.


- The splicing of group I introns needs a guanine nucleoside/nucleotide as a cofactor for participation of its 3' OH group (as a nucleophile).
- A 3',5'-phosphodiester bond is formed at the 5' end of intron by the nucleophilic attack of 3' OH of the incoming nucleotide on the phosphorus atom.
- In this manner, the incoming nucleophilic attack of 3' OH group displaces the 3' OH of an exon.
- The displaced exon's 3' OH acts as a nucleophile for the 3' end of intron.
- This whole process precisely cuts out the intron and ligates the exons.

Group I intron splicing mechanism

- There is a nucleophilic attack from a 3' OH of a guanosine nucleoside/nucleotide.
- 3' OH of the displaced exon causes a fresh nucleophilic attack on the 3' end of the intron.
- Subsequently precise exision of intron and ligation of exons occurs.
- The exised intron is finally degraded

- Some mitochondrial genes contain Group II introns.
- The reaction leading to splicing of Group II introns follows the mechanism of splicing of Group I introns except few differences.
- The differences lies in the nucleophile of the first step and the structure of removed intron. It is the 2-OH group of an Adenine residue present within the intron.
- The 3 phosphodiester bonds of the A residue form a branched *lariat* like structure.
- Rest mechanism is similar to that in Group I introns, i.e. the displaced exon's 3' OH acts as a new nucleophile for the 3' end of intron.
- Finally, the intron is removed in the form of a branched lariat structure.

Group II intron splicing mechanism

- It is mostly similar to the Group I intron splicing except a few differences.
- The differences are:
 - Adenine-3' OH acting as nucleophile in first step and resulting in a branched lariat like intermediate consisting of 3 phosphodiester bonds at the A residue.
 - 2- The outgoing intron is removed as a branched lariat shaped structure.

Reference: Lehninger Principles of Biochemistry Fourth Edition David L. Nelson & Michael M. Cox Chapter 26, Page 1011