DR. SHEO KUMAR SINGH
Assistant Professor,
Department of Mathematics
School of Physical Sciences,
Mahatma Gandhi Central University, Motihari, Bihar-845401.
Email: sheokumarsingh@mgcub.ac.in

Let X and Y be topological spaces. Then

- the collection $\mathfrak{B}=\{U \times V \mid U$ is open in X and V is open in $Y\}$ is a base for a topology on $\mathrm{X} \times Y$.
- the topology generated by the base \mathfrak{B} is said to be the product topology on $\mathrm{X} \times Y$.
- this topology is also said to be the box topology on $\mathrm{X} \times Y$.

Let X and Y be topological spaces. Then

- $p_{1}: \mathrm{X} \times Y \rightarrow X$ and $p_{2}: \mathrm{X} \times Y \rightarrow Y$ defined respectively, by $p_{1}(x, y)=x$ and $p_{2}(x, y)=y$ are the projection maps in the components X and Y.
- the collection $\delta=\left\{p_{1}{ }^{-1}(U) \mid U\right.$ is open in $\left.X\right\} \cup$ $\left\{p_{2}{ }^{-1}(V) \mid V\right.$ is open in $\left.Y\right\}$ is a subbase for a topology on $\mathrm{X} \times Y$.
- the topology generated by the subbase δ is said to be the product topology on $\mathrm{X} \times Y$.
- the basis element $U \times V=p_{1}^{-1}(U) \cap p_{2}^{-1}(V)$.

Proposition 1:

Product of two Hausdorff spaces is Hausdorff.
Proof: Let X and Y be two Hausdorff spaces. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two arbitrary distinct elements of $X \times Y$. So, $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. Without any loss of generality, let $x_{1} \neq x_{2}$, then as X is Hausdorff, so there must be two disjoint open sets U and V of X such that $x_{1} \in U$ and $x_{2} \in V$. But then $\mathrm{U} \times Y$ and $\mathrm{X} \times V$ are also disjoint. Clearly, $\mathrm{U} \times Y$ and $\mathrm{X} \times V$ are (basic) open sets of $\mathrm{X} \times Y$ with $\left(x_{1}, y_{1}\right) \in \mathrm{U} \times Y$ and $\left(x_{2}, y_{2}\right) \in \mathrm{X} \times V$. Thus, $\mathrm{X} \times Y$ is also Hausdorff.

Thus, hausdorffness is a productive property (a property P is said to be productive if each component has the property P then the product space also has the same property P).

Proposition 2:

A topological space X is Hausdorff if and only if the diagonal $\Delta_{X}=\{(x, x) \mid x \in X\}$ is closed in $X \times X$.
Proof: Let X be a Hausdorff space. We will show that complement of Δ_{X} is open in $\mathrm{X} \times X$. So, let $(x, y) \in \mathrm{X} \times X-\Delta_{X}$. Then, $(x, y) \notin \Delta_{X}$. Hence, $x \neq y$. But then, being X Hausdorff, there must be disjoint open sets U and V of X such that $x \in U$ and $y \in V$. Clearly, $\mathrm{U} \times V$ is open in $\mathrm{X} \times X$ and $(\mathrm{U} \times V) \cap \Delta_{X}=\emptyset$. So, $\mathrm{U} \times V \subseteq X \times X-\Delta_{X}$. Thus, $(x, y) \in \mathrm{U} \times V \subseteq X \times X-\Delta_{X}$, which implies that $X \times X-\Delta_{X}$ is a neighborhood of (x, y). Hence, $X \times X-\Delta_{X}$ is open and so, Δ_{X} is closed in $X \times X$.
Conversely, let Δ_{X} be closed in $X \times X$. To show X Hausdorff, let $x, y \in X$ with $x \neq y$. Hence, $(x, y) \notin \Delta_{X}=\overline{\Delta_{X}}$. But then, there must be some basic open set $\mathrm{U} \times V$ in $X \times X$ with $(x, y) \in \mathrm{U} \times V$ such that $(\mathrm{U} \times V) \cap \Delta_{X}=\emptyset$, whereby it follows that $\mathrm{U} \cap V=\varnothing$. Thus, X is Hausdorff.

- James R. Munkres, Topology, $2^{\text {nd }}$ ed., PHI.
- Colin Adams and Robert Franzosa, Introduction to Topology: Pure and Applied, Pearson.

THANK YOU

