Product Topology

DR. SHEO KUMAR SINGH Assistant Professor, Department of Mathematics School of Physical Sciences, Mahatma Gandhi Central University, Motihari, Bihar-845401. Email: sheokumarsingh@mgcub.ac.in

Product Topology

Let X and Y be topological spaces. Then

- the collection
 \$\mathcal{B} = {U \times V | U is open in X and V is open in Y} is a base for a topology on X \times Y.
- the topology generated by the base \mathfrak{B} is said to be the product topology on $X \times Y$.
- this topology is also said to be the box topology on X × Y.

Another way of describing product topology

Let X and Y be topological spaces. Then

- $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ defined respectively, by $p_1(x, y) = x$ and $p_2(x, y) = y$ are the projection maps in the components X and Y.
- the collection $S = \{p_1^{-1}(U) | U \text{ is open in } X\} \cup \{p_2^{-1}(V) | V \text{ is open in } Y\}$ is a subbase for a topology on $X \times Y$.
- the topology generated by the subbase S is said to be the product topology on $X \times Y$.
- the basis element $U \times V = p_1^{-1}(U) \cap p_2^{-1}(V)$.

Some important results

Proposition 1:

Product of two Hausdorff spaces is Hausdorff.

Proof: Let *X* and *Y* be two Hausdorff spaces. Let (x_1, y_1) and (x_2, y_2) be two arbitrary *distinct* elements of $X \times Y$. So, $x_1 \neq x_2$ or $y_1 \neq y_2$. Without any loss of generality, let $x_1 \neq x_2$, then as *X* is Hausdorff, so there must be two *disjoint* open sets *U* and *V* of *X* such that $x_1 \in U$ and $x_2 \in V$. But then $U \times Y$ and $X \times V$ are also disjoint. Clearly, $U \times Y$ and $X \times V$ are (basic) open sets of $X \times Y$ with $(x_1, y_1) \in U \times Y$ and $(x_2, y_2) \in X \times V$. Thus, $X \times Y$ is also Hausdorff.

Thus, hausdorffness is a productive property (a property P is said to be productive if each component has the property P then the product space also has the same property P).

Proposition 2:

A topological space X is Hausdorff if and only if the diagonal $\Delta_X = \{(x, x) | x \in X\}$ is closed in $X \times X$. **Proof:** Let X be a Hausdorff space. We will show that complement

Proof: Let X be a Hausdorff space. We will show that complement of Δ_X is open in $X \times X$. So, let $(x, y) \in X \times X \cdot \Delta_X$. Then, $(x, y) \notin \Delta_X$. Hence, $x \neq y$. But then, being X Hausdorff, there must be *disjoint* open sets U and V of X such that $x \in U$ and $y \in V$. Clearly, $U \times V$ is open in $X \times X$ and $(U \times V) \cap \Delta_X = \emptyset$. So, $U \times V \subseteq X \times X \cdot \Delta_X$. Thus, $(x, y) \in U \times V \subseteq X \times X - \Delta_X$, which implies that $X \times X \cdot \Delta_X$ is a neighborhood of (x, y). Hence, $X \times X \cdot \Delta_X$ is open and so, Δ_X is closed in $X \times X$.

Conversely, let Δ_X be closed in $X \times X$. To show X Hausdorff, let $x, y \in X$ with $x \neq y$. Hence, $(x, y) \notin \Delta_X = \Delta_X$. But then, there must be some basic open set $U \times V$ in $X \times X$ with $(x, y) \in U \times V$ such that $(U \times V) \cap \Delta_X = \emptyset$, whereby it follows that $U \cap V = \emptyset$. Thus, X is Hausdorff.

References:

- James R. Munkres, *Topology*, 2nd ed., PHI.
- Colin Adams and Robert Franzosa, *Introduction to Topology: Pure and Applied*, Pearson.

THANK YOU