Quotient Topology

DR. SHEO KUMAR SINGH Assistant Professor, Department of Mathematics School of Physical Sciences, Mahatma Gandhi Central University, Motihari, Bihar-845401. Email: sheokumarsingh@mgcub.ac.in

Quotient Topology

Let X be a topological space and Y be a set. Let $q: X \rightarrow Y$ be an onto map. Then

• the collection $\tau = \{V \subseteq Y \mid q^{-1}(V) \text{ is open in } X\}$ turns out to be a topology on Y (verify it !!).

- this topology τ is said to be the quotient topology on
 Y and such a map q is said to be the quotient map.
- this topology is also called as the quotient topology on Y induced by the quotient map q.

Some examples of quotient topology

Example 1: Consider \mathbb{R} with usual topology and a map $q: \mathbb{R} \to \{a, b, c\}$, defined by $q(x) = \begin{cases} a, \text{ if } x < 0 \\ b, \text{ if } x = 0 \\ c, \text{ if } x > 0 \end{cases}$.

Then $\{\emptyset, \{a, b, c\}, \{a\}, \{c\}, \{a, c\}\}$ is the quotient topology on $\{a, b, c\}$ induced by the map q.

Example 2: Consider \mathbb{R} with usual topology and a map $q: \mathbb{R} \to \mathbb{Z}$, defined by $q(x) = \begin{cases} x, \text{ if } x \in \mathbb{Z} \\ n, \text{ if } x \in (n-1, n+1) \text{ for an odd } n \in \mathbb{Z}. \end{cases}$ Then the quotient topology on \mathbb{Z} induced by q is generated by the base $\mathfrak{B} = \{B(n) | n \in \mathbb{Z}\}$, where $B(n) = \begin{cases} \{n\}, \text{ if } n \text{ is odd} \\ \{n-1, n, n+1\}, \text{ if } n \text{ is even} \end{cases}$

Quotient space: construction of new spaces from a given topological space

Let

- X be a topological space and ~ be an equivalence relation on X.
- $\overline{X} = \{\overline{x} \mid \overline{x} \text{ is an equivalence class containing } x \in X\}$ (or equivalently, \overline{X} is a partition of X).
- $q: X \to \overline{X}$ be the quotient map, defined by $q(x) = \overline{x}$. Then
- \overline{X} with resp. to the quotient topology is said to be a *quotient space* of X.

Some examples of quotient spaces

Example 3: (Cylinder) Let $X = [0,1] \times [0,1]$ be the subspace of \mathbb{R}^2 and \overline{X} be a partition of X consisting of the sets $\{\{(x,y)\} \mid 0 < x < 1 \text{ and } 0 < y < 1\}$ and sets $\{\{(0,y),(1,y)\} \mid 0 \le y \le 1\}$. Then the quotient space \overline{X} of X is a cylinder of height 1.

Example 4: (Torus) Let *X* as above and *X* be a partition of *X* consisting of the sets $\{\{(x, y)\} \mid 0 < x < 1 \text{ and } 0 < y < 1\}, \{\{(x, 0), (x, 1)\} \mid 0 < x < 1\}, \{\{(0, y), (1, y)\} \mid 0 < y < 1\} \text{ and the set} \{(0, 0), (0, 1), (1, 0), (1, 1)\}.$ Then the quotient space \overline{X} of *X* is a torus.

References:

- James R. Munkres, *Topology*, 2nd ed., PHI.
- Colin Adams and Robert Franzosa, *Introduction to Topology: Pure and Applied*, Pearson.

THANK YOU