COMPLEX INTEGRATION

By
Dr. Babita Mishra
Assistant Professor,
Department of Mathematics,
School of Physical Sciences.
Mahatma Gandhi Central University,
Motihari, Bihar.

SOME BASIC DEFINITIONS:

$>$ Path: A continuous complex function γ defined on a closed and bounded interval $[a, b]$.
$>$ Closed Path: The path is closed if $\gamma(a)=\gamma(b)$.
>Simple Path: The path is simple (Jordan arc) if it does not cross itself.
> Multiply connected Path: A closed path which intersects itself more than once.
$>$ Smooth Path: If first order derivative at each point of the path exist and is continuous in its domain.
$>$ Piecewise Smooth Path: If there exist a partition of $[a, b]$ and path is smooth on each subinterval.
$>$ Contour: A curve consisting of a finite number of smooth arcs joined end to end.

PRIMITIVES

Suppose a function f is continuous in a domain D , then the following statements are equivalent:
I. f has antiderivative F in D.
II. The integrals of $f(z)$ along any path(lying entirely in D) between any two fixed points in D is independent of path.
I. The integral of $f(z)$ along every closed contour is zero.

CAUCHY'S THEOREM

Let $f(z)$ be analytic on and inside a simple closed contour C and let $f^{\prime}(z)$ be also continuous on and inside C, then

$$
\int_{C} f(z) d z=0
$$

CAUCHY-GOURSAT THEOREM

If a function $f(z)$ is analytic throughout a simply connected domain D, then for any simple closed contour C lying completely inside D,then

$$
\int_{C} f(z) d z=0
$$

Note: In this theorem the condition of continuity of $f^{\prime}(z)$ has been relaxed.

REMARK:

The integral of a function $f(z)$ which is analytic throughout a simply connected domain D depends on the end points and not on the particular contour taken. Suppose α and β are inside D, C_{1} and C_{2} are any contours inside D joining α to β, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

THEOREM:

Suppose that γ is a simple closed contour, described in the counterclock wise direction. Let C_{1}, C_{2}, . . ., C_{n} be positively oriented simple closed contours, where C_{1}, C_{2}, . . ., C_{n} are all inside γ. Interiors of all $C_{1}, C_{2}, \ldots, C_{n}$, are disjoint. If a function $f(z)$ be analytic through out the closed region consisting of all points within and on γ except for the points interior to each C_{k},
then

$$
\int_{\gamma} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z
$$

CAUCHY INTEGRAL FORMULA

Let $f(z)$ be analytic in a domain D and let γ be a simple closed contour in D, taken in the positive sense. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(s)}{s-z} d s, \text { where } z \notin \gamma .
$$

Example: With the help of Cauchy integral formula evaluate

$$
\int_{\gamma} \frac{z^{2}-4 z+4}{z+i} d z, \text { where } \gamma \text { is the circle }|z|=2
$$

Solution:

let $f(s)=s^{2}-4 s+4$ and $z=-i$, we can easily see that $z=-i$ lies inside the circle, also the function is analytic at all points within and on the contour γ,

Then by Cauchy's integral formula

$$
\begin{aligned}
\int_{\gamma} \frac{z^{2}-4 z+4}{z+i} d z & =2 \pi i f(-i) \\
& =2 \pi i(3+4 i) \\
& =\pi(6 i-8) \quad \text { Answer }
\end{aligned}
$$

THANK YOU :

