Vibration Of Finite String With Fixe氟总nds

Dr. Rajesh Prasad

Assistant Professor

Department of Mathematics
Mahatma Gandhi Central University
Motihari-845401, Bihar, India
E-mail: rajesh.mukho@gmail.com
rajeshprasad@mgcub.ac.in

April 6, 2020

Suppose that vibration of the string of *

 length L fixed at both sides (ends).$$
\begin{align*}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, 0<x<L, t>0 \tag{1}\\
& u(x, 0)=f(x), \quad 0 \leq x \leq L \tag{2}\\
& u_{t}(x, 0)=g(x), \quad 0 \leq x \leq L \tag{3}\\
& u(0, t)=0, u(L, t)=0, t \geq 0 \tag{4}
\end{align*}
$$

We know that the solution of the wave equation $\quad u(x, t)=\emptyset(x+c t)+\varphi(x-c t)$

Use the initial conditions, we obtain

$$
\begin{aligned}
u(x, 0) & =\emptyset(x)+\varphi(x)=f(x), & & 0 \leq x \leq L \\
u_{t}(x, 0) & =c\left[\phi^{\prime}(x)-\varphi^{\prime}(x)\right]=g(x), & & 0 \leq x \leq L
\end{aligned}
$$

Solving from equation (5) and (6), we get the value of $\phi(v)$ and $\varphi(w)$

$$
\begin{array}{ll}
\emptyset(v)=\frac{1}{2} f(v)+\frac{1}{2 c} \int_{0}^{v} g(\alpha) d \alpha+\frac{k}{2}, & 0 \leq v \leq L \\
\varphi(w)=\frac{1}{2} f(w)-\frac{1}{2 c} \int_{0}^{w} g(\alpha) d \alpha-\frac{k}{2}, & 0 \leq w \leq L
\end{array}
$$

There fore, the required solution

$u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\alpha) d \alpha$, for, $0 \leq x+c t \leq L$ and $0 \leq x-c t \leq L$. The solution is determined by the initial data $t \leq \frac{x}{c^{\prime}}$ and $t \leq \frac{L-x}{c}, t \geq 0$.

For larger times, applying the boundary conditions, we *) obtain

$$
\begin{equation*}
u(0, t)=\emptyset(c t)+\varphi(-c t)=0, \quad t \geq 0, \tag{9}
\end{equation*}
$$

$u(L, t)=\varnothing(L+c t)+\varphi(L-c t)=0$,
$t \geq 0$,

Setting $\beta=-c t$, equation (9) reduces to

$$
\varphi(\beta)=-\varnothing(-\beta), \quad \beta \leq 0,
$$

Setting $\beta=L+c t$, equation (10) takes the form

$$
\emptyset(\beta)=-\varphi(2 L-\beta), \quad \beta \geq L
$$

If we take $v=-w$, then rewrite the equation (7) as
$\varnothing(-w)=\frac{1}{2} f(-w)+\frac{1}{2 c} \int_{0}^{-w} g(\alpha) d \alpha+\frac{k}{2^{\prime}}, \quad 0 \leq-w \leq L$
Now, from equation (11) and (13), we obtain

$$
\varphi(w)=-\frac{1}{2} f(-w)-\frac{1}{2 c} \int_{0}^{-w} g(\alpha) d \alpha-\frac{k}{2}, \quad-L \leq w \leq 0
$$

We observe that the range of $\varphi(w)$ is extended to $-L \leq w \leq L$

If we taken $\beta=v$ then equation (12) reduces to

$$
\begin{equation*}
\emptyset(v)=-\varphi(2 L-v), \quad v \geq L \tag{15}
\end{equation*}
$$

Putting $w=2 L-v$ in equation (8), we get
$\varphi(2 L-v)=\frac{1}{2} f(2 L-v)-\frac{1}{2 c} \int_{0}^{2 L-v} g(\alpha) d \alpha-\frac{k}{2}, \quad 0 \leq 2 L-v \leq L$
Now from equation (15) and (16), we obtain

$$
\begin{equation*}
\varnothing(v)=-\frac{1}{2} f(2 L-v)+\frac{1}{2 c} \int_{0}^{2 L-v} g(\alpha) d \alpha+\frac{k}{2}, \quad L \leq v \leq 2 L \tag{17}
\end{equation*}
$$

In above expression, the range of $\emptyset(v)$ is extended to the intekval
$L \leq v \leq 2 L$. Therefore, we obtain $\varnothing(v), \forall v \geq 0$ and $\varphi(w)$,
$\forall w \leq L$. The solution is determined $\forall 0 \leq x \leq L$ and $t \geq 0$
Question 1: Determine the solution of the following problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
& u(x, 0)=\sin \left(\frac{\pi x}{L}\right), 0 \leq x \leq L \\
& u_{t}(x, 0)=0, \quad 0 \leq x \leq L \\
& u(0, t)=0, \quad u(L, t)=0, \quad t \geq 0
\end{aligned}
$$

Question 2：Determine the solution of the following problem

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0 \\
& u(x, 0)=f(x) 0 \leq x \leq L \\
& u_{t}(x, 0)=g(x), \quad 0 \leq x \leq L \\
& u(0, t)=p(t), u(L, t)=q(t), t \geq 0
\end{aligned}
$$

Thank you

坚

