

Course title: Quantum Chemistry-I
Course Code: CHEM4006 (Core Course)
For Post Graduation: M.Sc. (Semester-II)

By
Dr. Uttam Kumar Das, Assistant Professor
Department of Chemistry
School of Physical Sciences
Mahatma Gandhi Central University, Bihar

UNIT-4; Part-1

Symmetry Elements and Point Groups Determination

Symmetry Elements: It is a geometrical entity (line, plane or point) with respect to which one or more symmetry operations may be carried out.

Symmetry Operation: Some operation that results a set of objects in indistinguishable configurations said to be equivalent.

Identical symmetry (E): 360 degree rotation of the molecule or object results the exactly same configuration of the initial one. It is called identical symmetry.

If there I no symmetry then also ' \mathbf{E} ' symmetry is present, i.e., every molecule has ' \mathbf{E} ' Symmetry.

There are four types of symmetry elements:-

1) Simple axis or Proper axis of symmetry $\left(\mathbf{C}_{\mathbf{n}}\right)$: It is an imaginary axis about which rotation of certain angle indistinguishable configurations is resulted.

Structure (II) is reulted due to 180 rotaion of structure (I) and vice versa.
Both the structure (I) and (II) are indistinguishable. Therefore it has C2-imple axi of symmetry

When more than one symmetry axis present, the one with the largest value of n is called PRINCIPLE AXIS
2) Plane of symmetry $(\boldsymbol{\sigma})$: It is an imaginary plane that divide the molecule/object into two half that are mirror image to each other. The plane must go through the molecule, not out side the molecule.
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{yz}}$ means "reflection in a plane along the y - and z-axix, usually called the yz plane
Similarly, $\sigma_{y}=\sigma_{x z}$ means "reflection in a plane along the $x-$ and $z-a x i x$, usually called the $y z$ plane All planar molecules have at least one plane of symmetry that is molecular plane

So, this molecule has two symmetry plane (a) and (b)
Linear molecules have infinite number of plane

$\mathrm{H}_{2} \mathrm{O}$: Distorted tetrahedral

It has two planes; 1 molecular plane and other one bisecting the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle

NH_{3} : Distorted tetrahedral

It has 3 planes containing one $\mathbf{N}-\mathbf{H}$ bond and bisecting opposite HNH angle

BCI_{3} : Trigonal planer

It has 4 planes; one molecular plane and 3 planes containing a $\mathbf{B - C l}$ bond that bisecting the other $\mathbf{C l}-\mathbf{B}-\mathbf{C l}$ angle

[AuCl4]: : Square planar

It has 5 planes; 1 molecular plane; 2 planes containing opposite $\mathrm{Cl}-\mathrm{Au}-\mathrm{Cl}$ bond and 2 perpendicular plane bisecting the $\mathrm{Cl}-\mathrm{Au}-\mathrm{Cl}$ angles.

Octahedral molecule like SF_{6} has 9 plane

(for better understanding go through the link given below)

https://chem.libretexts.org/Core/Inorganic Chemistry/Coordination Chemis try/Properties of Coordination Compounds/Isomers/Optical Isomers in I norganic Complexes/Identifying Planes of Symmetry in Octahedral Co mplexes

Result of multiple plane of ymmetry (σ) operation

Plane of symmetry (σ) produces an equivalent configuration.
Example: $\sigma 2=\sigma \sigma$ produces an identical configuration with the original.
That is $\sigma^{2}=\mathbf{E}$

$$
\begin{gathered}
\text { And } \sigma^{\mathrm{n}}=\mathbf{E} \text { if } \mathrm{n} \text { is even, i.e., } \mathrm{n}=2,4,6, \ldots \\
\sigma^{\mathrm{n}}=\sigma \text { if } \mathrm{n} \text { is odd, i.e., } \mathrm{n}=3,5,7, \ldots
\end{gathered}
$$

3) Centre of symmetry or inversion centre (i): It is an imaginary point from which in equal distances in opposite direction it will have the same atom or group of atoms.

Due to inversion operation, the coordinate of a point shifted from (x, y, z) to $(-x,-y,-z)$

If an atom is situated at the inversion centre, then it is the only atom which will not move upon inversion operation. Rest of the atoms in the molecule present in pairs which are "twins". Therefore, there is no inversion centre for those molecules that containing an odd number of atoms.

Product of symmetry operators means: "carry out the operation successively beginning with the one on the right".

$$
i^{2}=i i=E
$$

$i^{n}=E$, if n is even
 $=\mathbf{i}$, if \boldsymbol{n} is even

4) Improper axis or Alternative axis of symmetry $\left(\mathbf{S}_{\mathbf{n}}\right)$: It is an imaginary axis about which rotation of certain angle followed by reflection on a mirror plane perpendicular to that rotational axis results indistinguishable configurations.

Starting orientation

Equivalent orientation

Therefore, the $\mathbf{C H}_{4}$ molecule has \mathbf{S}_{4} improper axis of symmetry.
Similarly PCI5 molecule has \mathbf{S}_{3} improper axis of symmetry
The existence of an \mathbf{S}_{n} axis requires the existence of a $\mathbf{C}_{\mathrm{n}} / \mathbf{2}$ axis.
If both $\mathbf{C}_{\mathbf{n}}$ and $\boldsymbol{\sigma}_{\mathbf{h}}$ exist, then $\mathbf{S}_{\mathbf{n}}$ must exist. But $\mathbf{S}_{\mathbf{n}}$ can exist although \mathbf{C}_{n} and $\boldsymbol{\sigma}_{\mathrm{h}}$ do not exit.

Products of Symmetry Operators Products of Symmetry Operation

Symmetry operators are well represented by means of a stereogram or stereographic projection. Start with a circle which is a projection of the unit sphere in configuration space (usually the $x y$ plane). Take x to be parallel with the top of the page.

A point above the plane (+z-direction) is represented by a small filled circle.
A point below the plane (-z-direction) is represented by a larger open circle. A general point transformed by a point symmetry operation is marked by an \mathbf{E}.

Symbols used to show an n-fold proper axis. For improper axes the same geometrical symbols are used but they are not filled in. Also shown are the corresponding rotation operator and angle of rotation ϕ.
$\mathrm{n}=2$
3
4
5
6
etc.
θ

digon
triangle rhombus

	digon	triangle	rhombus	pentagon	hexagon
operator:	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
$\phi=2 \pi / \mathrm{n}$	π	$2 \pi / 3$	$\pi / 2$	$2 \pi / 5$	$\pi / 3$

For improper axes the same geometrical symbols are used but are not filled in.

Stereograms showing examples of the point symmerry
${ }^{4}$ prators listed in Table 2.1-1. (a) I (b) C_{22} (c) $\mathrm{IC}_{42}{ }^{*}$ (d) G_{2} (e) $\mathrm{S}_{22}{ }^{*}$.

(a) The effect of $\mathrm{R}^{-}(\pi / 2 \quad z)$ on :e, $\mathbf{e}_{\sim} \mathbf{e}_{1}$;
(b) A rotation
$\mathbf{R}(-\phi \mathbf{n})$ means a clockwise rotation through an angle of magnitude ϕ about n, that is $\mathrm{R}^{-}(\phi \mathrm{n})$. (c) Proof that $\mid \mathcal{C}_{2 z}=\sigma_{z}$. (d) The location of the coordinate axes is arbitrary; here the plane of the stereogram is normal ton

(a)

(c)

(b)

(d)

The complete set of point-symmetry operators including \mathbf{E} that are generated from the operators $\left\{R_{1}, R_{2}, \ldots\right\}$ that are associated with the symmetry elements
$\left\{C_{1}, i, C_{n}, S_{n}, \sigma\right\}$ by forming all possible products like $R_{2} R_{1}$ satisfy the necessary group properties:

1) Closure
2) Contains E
3) Satisfies associativity and
4) Each element has an inverse

Such groups of point symmetry operators are known as Point Groups

Problem: construct a multiplication table for the S_{4} point group having the set of elements: $S_{4}=\left\{E, S_{4}{ }^{+}, S_{4}{ }^{2}=C_{2}, S_{4}{ }^{-}\right\}$

S_{4}	E	S_{4}^{+}	C_{2}	S_{4}^{-}
E	E	S_{4}^{+}	C_{2}	S_{4}^{-}
S_{4}^{+}	S_{4}^{+}			
C_{2}	C_{2}			
S_{4}^{-}	S_{4}^{-}			

Complete row 2 using stereograms: $\mathrm{S}_{4}{ }^{+} \mathrm{S}_{4}{ }^{+}, \mathrm{C}_{2} \mathrm{~S}_{4}{ }^{+}, \mathrm{S}_{4}{ }^{-} \mathrm{S}_{4}{ }^{+}$(column x row)

The complete table is given below

S_{4}	E	S_{4}^{+}	C_{2}	S_{4}^{-}
E	E	S_{4}^{+}	C_{2}	S_{4}^{-}
S_{4}^{+}	S_{4}^{+}	C_{2}	S_{4}^{-}	E
C_{2}	C_{2}	S_{4}^{-}	E	S_{4}^{+}
S_{4}^{-}	S_{4}^{-}	E	S_{4}^{+}	C_{2}

Determination of Point Group of Any molecule

i: centre of inversion
C_{2} : 2-fold rotational axis C_{n} : n-fold rotational axis \& σ_{h} : horizontal (and, with respect to the principal axis perpendicular) mirror plane σ_{v} : vertical (and, with respect to the principal axis parallel) mirror plane σ_{d} : diagonal mirror plane \mathbf{S}_{n} : rotatory-reflection plane

Representative hapes for various Point Groups

Few examples with Symmtry Elements and their Point Group

Point Group	Symmetry Elements	Example Molecule
$C_{\text {s }}$	E, σ	BFCIBr (planar)
C_{2}	E, C_{2}	$\mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{C}_{2 \mathrm{v}}$	$E, C_{2}, \sigma, \sigma^{\prime}$	$\mathrm{H}_{2} \mathrm{O}$
$C_{3 v}$	$E, C_{3}, C_{3}, 3 \sigma$	NF_{3}
$C_{\text {cov }}$	$E, C_{\infty}, \infty \sigma$	HCl
$C_{2 h}$	E, C_{2}, σ, i	trans- $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~F}_{2}$
$D_{2 h}$	$E, C_{2}, C_{2}^{\prime}, C_{2}^{*}, \sigma, \sigma^{\prime}, \sigma^{*}, i$	$\mathrm{C}_{2} \mathrm{~F}_{4}$
$D_{3 n}$	$E, C_{3}, C_{3}^{2}, 3 C_{2}, S_{3}, S_{3}^{2}, \sigma, 3 \sigma^{\prime}$	SO_{3}
$D_{4 n}$	$E, C_{4}, C_{4}^{3}, C_{2}, 2 C_{2}^{\prime}, 2 C_{2}^{\prime \prime}, i, S_{4}, S_{4}^{3}, \sigma, 2 \sigma^{\prime}, 2 \sigma^{\prime \prime}$	XeF_{4}
$D_{6}{ }^{\prime}$	$\begin{aligned} & E, C_{6}, C_{6}^{5}, C_{3}, C_{3}^{2}, C_{2}, 3 C_{2}^{\prime}, 3 C_{2}^{\pi}, i, S_{3}, S_{3}^{2}, \\ & S_{6}, S_{6}^{5}, \sigma, 3 \sigma^{\prime}, 3 \sigma^{*} \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{6}$ (benzene)
$D_{\text {a }}$ h	$E, C_{\infty}, S_{\infty}, \infty C_{2}, \infty \sigma, \sigma^{\prime}, i$	$\mathrm{H}_{2}, \mathrm{CO}_{2}$
T_{d}	$E, 4 C_{3}, 4 C_{3}^{2}, 3 C_{2}, 3 S_{4}, 3 S_{4}^{3}, 6 \sigma$	CH_{4}
O_{h}	$\begin{aligned} & E, 4 C_{3}, 4 C_{3}^{2}, 6 C_{2}, 3 C_{4}, 3 C_{2}, i, 3 S_{4}, 3 S_{4}^{3}, \\ & 4 S_{6}, 4 S_{6}^{5}, 3 \sigma, 6 \sigma^{\prime} \end{aligned}$	SF_{6}

