Theory of Prime Numbers: Basics

DR. SHEO KUMAR SINGH
Assistant Professor,
Department of Mathematics
School of Physical Sciences,
Mahatma Gandhi Central University, Motihari, Bihar-845401
Email: sheokumarsingh@mgcub.ac.in

All the numbers discussed in the presentation are natural numbers

ers are essential and more commor day-to-day life.

- Question is: What is a prime number?
- A number greater than 1 is prime if it cannot be written as a product of two smaller numbers.
- For example 2, 3, 5, 7, 11, 13, 17, ... etc.

Why prime numbers are so important?

- Fundamental theorem of arithmetic (~300 BCE):

Every natural number greater than 1 can be expressed uniquely as the product of primes (up to rearrangement).
Above result shows that prime numbers are the atomic elements for all natural numbers,
For example,

- $6=2 \times 3,10=2 \times 5,15=3 \times 5,40=2 \times 2 \times 2 \times 5,100=2 \times 2 \times 5 \times 5, \ldots$
- These are very useful in making (high security) passwords, and the simple reason behind this is the following fact
- 29×31=899 , but what about 899= -- $\times-$, ,
- I mean to say that, it is easy to multiply two numbers but very difficult to factorize a number
- Euclid's theorem (~300 BCE): There are infinitely many prime numbers.
- Proof (outline):

1. Suppose for contradiction that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{n}$. (For instance, suppose 2, 3, and 5 were the only primes.)
2. Now multiply all the primes together and add 1 , to create a new number $P=p_{1} p_{2} \ldots p_{n}+1$. (For instance, P could be $2 \times 3 \times 5+1$ $=31$.)
3. P is then an integer which is larger than 1 , but is not divisible by any prime number.
4. But this contradicts the fundamental theorem of arithmetic. Hence there must be infinitely many primes. \square

Some famous conjectures

(Twin-Prime): There are infinitely many pair of primes p \& p+2 which differs by exactly 2.

- For example, $(3,5),(5,7),(11,13),(17,19),(29,31),(41$, $43),(59,61),(71,73),(101,103),(107,109),(137,139)$, $(149,151),(179,181),(191,193),(197,199)$, ... etc.
(Gold-Bach): Every even number, greater than 2, can be expressed as the sum of two prime numbers.
- For example, $4=2+2,6=3+3,8=3+5,10=3+7=5+5,12=5+7$, ... etc.
- Euclid's theorem tells us in principle that there are arbitrarily large primes out there, but does not give a recipe to find them.

Formula/technique to know that a given number is prime

- A number N is prime if it cannot be divisible by any prime $\leq \sqrt{ } \mathrm{N}$
- The largest known prime (as of January 2020) is $2^{82,589,933}-1$, which is $24,862,048$ digits long and was found by Patrick Laroche of the GIMPS in 2018.

Unfortunately, still there is no formula or technique to find - what is the $\mathrm{n}^{\text {th }}$ prime number p_{n} ?

- If P is a prime number, then what is the next prime?
- On the other hand, the primes also have some local structure. For instance,
- They are all odd (with one exception);
- They are all adjacent to a multiple of six (with two exceptions);
- Their last digit is always $1,3,7$, or 9 (with two exceptions).
- Prime number theorem (Hadamard, de Vallée Poussin, 1896):
- The $\mathrm{n}^{\text {th }}$ prime is approximately equal to $\mathrm{n} \ln \mathrm{n}$.
- The Riemann hypothesis conjectures an even more precise formula for the $\mathrm{n}^{\text {th }}$ prime.

It remains unsolved; the Clay Mathematics Institute has a US \$1,000,000 prize for a correct proof of the above hypothesis.

References:

- Thomas Koshy, Elementary Number Theory with Applications, $2^{\text {nd }}$ ed., Academic Press.
- Niven, Zuckerman and Montgomery, An Introduction to the Theory of Numbers, $5^{\text {th }}$ ed., John Wiley \& Sons.
- Terence Tao, Structure and Randomness in the Prime Numbers, Science Colloquium (January 2007).

THANK YOU

