
INTRODUCTION: NETWORK

VIRTUALIZATION

 Aggregation of multiple virtual resources onto a
single platform

 Completely isolated

 Can be programmed on any layer

 Network services same as those provided by non-
virtualized network



INTRODUCTION : ENTITIES IN NETWORK

VIRTUALIZATION ENVIRONMENT

 Virtual Network

 Substrate Network

 Infrastructure Provider

 Service Provider

 Virtual Network Provider

 Virtual Network Operator



INTRODUCTION : IMPORTANT FEATURES OF

NETWORK VIRTUALIZATION ENVIRONMENT

 Isolation

 Flexibility

 Scalability

 Manageability

 Evolvability



INTRODUCTION : RESEARCH ISSUES IN

NETWORK VIRTUALIZATION

 Virtual Network Mapping

 Resource Scheduling

 Admission Control

 Mobility and Dynamism in Network 

Virtualization Environment

 Interfacing

 Failure Handling

 Naming and Addressing

 Virtual Network Management

 Security and Privacy



PROBLEM DEFINITION

 Virtual Network Mapping/Embedding(VNE)

❖ Efficient VNE algorithms for efficient utilization

of the substrate network

❖ VNE problem : Mapping a virtual network with

constraints on nodes and links, on to specific

physical nodes and links in the substrate

network, keeping capacity into account.

❖ Divided into 2 steps :Virtual Node Mapping

: Virtual Link Mapping



PROBLEM DEFINITION: FORMAL

DESCRIPTION OF VNE PROBLEM

 SN = (N,L) be a substrate network

 VNRi = (Ni, Li) be a set of i = 1, ..., n Virtual Network
Requests

 R= ς𝑗=1
𝑚 𝑅𝑗 be a vector space of resource vectors over

resource sets R1, ….., Rm

 cap : N ∪ L → R ,a function that assigns available
resources to elements of the substrate network

 For each VNRi, let demi : Ni ∪ Li → R be a function that
assigns demands to elements of all Virtual Network
Requests

 Thus, a virtual network embedding consists of two
functions fi : Ni → N and gi : Li → SN’⊆ SN for each VNRi

such that ∀ni∈ Ni : demi (ni) ≤ cap(fi(n
i)) and ∀ li ∈ Li : ∀l ∈

gi(l
i) : demi(l

i) ≤ cap(l).

 fi is then called a node mapping function (VNoM) and gi is
called a link mapping function (VLiM).

 Together, they form an embedding for VNRi



VN REQUESTS EMBEDDED ON SUBSTRATE

NETWORKS OF MULTIPLE INFRASTRUCTURE

PROVIDERS



CATEGORIZATION OF VIRTUAL NETWORK

EMBEDDING APPROACHES

 Static vs. Dynamic

 Centralized vs. Distributed

 One Stage vs. Two Stage



VIRTUAL NETWORK EMBEDDING METRICS

 Residual Saved SN Resources

 Runtime of Embedding Algorithm

 Revenue

 Cost

 Acceptance Ratio

 Utilization

 Number of Communicated Messages

The virtual network embedding strategies to optimize 
the above metrics are categorized as:

 Exact Methods

 Heuristic Methods

 Meta-Heuristic Methods



VN EMBEDDING ACROSS MULTIPLE

INFRASTRUCTURE PROVIDERS USING GENETIC

ALGORITHM

THE PROBLEM STRUCTURE

 The proposed model is based on GA, so various modules related with GA 

based VNE problem are discussed in this section.

Chromosome Structure: In the proposed VNE problem, the solution is 

encoded using integer encoding as with binary encoding it would become too 

large to incorporate the required combined information of the virtual 

networks and substrate networks. The chromosome string representation is 

described through an example

Parent 1: 

 

Parent 2: 

 

5 {} 3 {} 1 2 {} {} 4 {} {} {} {} {} {} {} {} {} {} {} 13 6 8 12 11 7 {} {} 9 10 

{} {} {} {} {} {} {} {} {} {} 8 13 11 9 {} {} 6 7 10 12 3 5 1 {} 2 {} {} {} 4 {} 



THE PROBLEM STRUCTURE

Crossover: After the random initial population generation, crossover is performed on the parent

chromosomes. Multipoint crossover is used for the purpose and the crossover points are chosen such

that it represents the beginning of the new allele of the substrate network. These multiple points are

denoted by arrows in figure where the crossover operation is demonstrated.



THE PROBLEM STRUCTURE

 Feasibility Check: It has been observed that after crossover, few

of the solutions (children) generated are invalid. Therefore, a

feasibility test is performed on the offspring. The solutions where

one virtual network is seen to be mapped on two substrate

networks are infeasible solutions hence discarded. The crossover

operation is repeated again to get feasible solutions. Child 1 and

child 2 are examples of feasible solutions. Figure below shows an

infeasible chromosome that is to be discarded. This is because the

same virtual network with 5 nodes is mapped on substrate

network 1 as well as substrate network 3 making it an infeasible

solution.
 

 
5 {} 3 {} 1 2 {} {} 4 {} {} {} {} {} {} {} {} {} {} {} 3 5 1 {} 2 {} {} {} 4 {} 



THE PROBLEM STRUCTURE

 Mutation: In the mutation phase the individual elements of 

every allele of a child are shuffled with a mutation probability 

discussed further in the performance evaluation section.

  

 

 

                                                                                      After mutation 

 

 

 

3 5 1 {} 2 {} {} {} 4 {} {} {} {} {} {} {} {} {} {} {} 13 6 8 12 11 7 {} {} 9 10 

4 5 3 {} 1 2 {} {} {} {} {} {} {} {} {} {} {} {} {} {} 6 {} 8 12 9 7 13 10 11 {} 



THE PROBLEM STRUCTURE

 Fitness Function

 SN = {SN1, SN2, SN3…..}: set of substrate networks owned by multiple InPs

 VN = {VN1, VN2, VN3.....}: set of virtual network requests to be mapped on 
multiple InPs SN

 VNi = {Vi1, Vi2, Vi3...}: set of vertices in the ith VN 

 Aij : jth vertex of the ith VN

 Pij : Position of Aij i.e. SN node to which Aij is mapped

 U[Aij] : weight of Aij i.e. resource (CPU)  requested by  jth vertex of the ith VN

 V[Pij] : weight of Pij i.e. available resource (CPU) on Pij

 EAijk : Edge connecting Aj vertex to Ak vertex of ith VN

 EPijk : Smallest link (path with minimum weight) connecting Pij node to Pik node

 w(EAijk) : weight on the edge EAijk i.e. bandwidth  requested by virtual network 
edge (EAijk)

 w(EPijk) : weight on the link EPijk i.e. bandwidth available on substrate network 
link (EPijk)

 Weight difference Wij of VN vertices (Aij) and the substrate network nodes (Pij) 
is calculated as in equation 1.

 Wij = V[Pij] – U[Aij]



THE PROBLEM STRUCTURE :FITNESS FUNCTION

 Node weight difference (Node_Weigh_diff) for all the corresponding virtual 
networks and substrate network pairs represented in an individual 
chromosome is given as in equation 10.

Node_Weigh_diff = σ𝑖σ𝑗 𝑊𝑖𝑗 (10)

 Define a set,  Si = {(Aij,Pij) | ∀j ϵVNi}  ( obtaining VN vertices and the 
corresponding SN node pairs for every VN request mapped on SN)

 (Edge_Weigh_diff) is obtained by summing up all the corresponding edge/link 
weight differences of the virtual networks mapped on substrate networks for 
an individual chromosome as given in equation  11.

Edge_Weigh_diff = σ𝑖 σ𝑗,𝑘{( w(EPijk) – w ( EAijk))} (for each unique <(Aij,Pij),

(Aik,Pik)> ϵ ordered pair of Si)  (11)

 Fitness (Z) for an individual chromosome is calculated by adding the node and 
edge weight differences as in equation 12..

Z = Node_Weigh_diff + Edge_Weigh_diff (12)

 After the fitness for all the chromosomes is calculated, the chromosome that 
has the minimum fitness value is selected as given by equation 13. 

Weights_diff = 𝑚𝑖𝑛𝑘=1
𝑘=𝑝𝑜𝑝𝑠𝑖𝑧𝑒

(Z) (13)

 Here, k varies from 1 to popsize. Popsize is the total population size.



THE PROBLEM STRUCTURE

 Selection : Selection is carried out to select the 

parent chromosomes for the next generation. The 

selected chromosomes are then assigned 

opportunities to reproduce. Several types of 

parent selection methods exist such as roulette 

wheel selection, random selection, rank selection, 

random selection, elitism selection, tournament 

selection etc. In this work, the selection is done 

through sorting mechanism wherein the best half 

chromosomes with respect to the fitness score are 

selected as the parent chromosomes for the 

reproduction of the offspring.



THE ALGORITHM

 The pseudo-code of the algorithm, for the proposed model, is as follows.

GA Based VNE ( )

{ 

Generate initial population P1 randomly // random VN mapping chromosomes are 
generated

Calculate the fitness of each chromosome using the fitness function (3) 

for (i=1; i<=number_of_generations; i++) 

{

Sort the population of P1                                             

Select the best half of P1and store it in a new population P2

Randomly select pairs of parents from the population P2

Perform crossover based on the crossover probability on the parents to produce 
offspring 

Apply feasibility check on each new individual

Mutate offspring based on the mutation probability

Store this newly generated population in P1

Evaluate the fitness of each new individual in P1

} 

} 



PERFORMANCE EVALUATION

 Experimentation is done ten times on various parameters and the 
average is shown in various results. Input parameters for the 
experiments are as follows:

 Population size is 50 (generated randomly).

 Size of substrate network varies uniformly in a range of 50 to 100.

 All pairs of substrate nodes and VN vertices are randomly connected 
with a probability of 0.5

 Weights on the nodes and links of the SN are uniformly distributed 
between 50 and 100.

 Weights on the vertices of the VN requests are uniformly distributed 
within a range of 0 to 20 

 Weights on the VN’s edges are uniformly distributed between 0 and 
50.

 The arrival of VN requests is modeled by a Poisson process with 
rate 𝜆𝐴= 4 VN requests per 100 time unit 

 VN lifetime is modeled by exponential distribution with mean µL= 
100 time units.

 Crossover probability is 0.7 and the mutation probability is 0.03.



OBSERVATION ON WEIGHT DIFFERENCE

 Experiment 1: Small Sized VNs

 Small virtual network sets comprise of VN vertices varying from 2 

to 15. The number of substrate networks serving these VN 

requests varies in a range of 20 to 30. Other input parameters are 

as given above. GA is iterated for 100 generations.

 The result for the fitness function is evaluated for three random 

instances of the varying VN size i.e. 15, 10 and 5 and is shown in 

figure 



OBSERVATION ON WEIGHT DIFFERENCE

 Experiment 2: Medium Sized VNs

 Medium virtual network sets comprise of VN vertices varying

from 15 to 35. The number of substrate networks serving these

VN requests varies in a range of 30 to 40. Other input parameters

are same as given above and GA is iterated for 100 generations.

 The result for the fitness function is evaluated for three random

instances of the varying VN size i.e. 35, 30 and 25 and is shown in

figure



OBSERVATION ON WEIGHT DIFFERENCE

 Large Sized VNs

 Large virtual network sets comprise of VN vertices varying from 

35 to 50. The number of substrate networks serving these VN 

requests varies in a range of 40 to 50. Other input parameters 

remain same as given above and GA is iterated for 100 

generations.

 The result for the fitness function is evaluated for three random 

instances of the varying VN size i.e. 50, 45 and 40 and the result 

is shown in figure 



CONCLUSION ON OBSERVATIONS DERIVED

FOR ALL SIZED VN EMBEDDINGS

 The large sized VNs have higher weights_diff as 

compared to small and medium sized VNs.

 The virtual network requests with large number 

of vertices and favorably highly weighted vertices 

and edges have greater weights_diff than those 

VN requests which have less number of vertices 

and low weights on the vertices and edges.

 GA takes 100 generations to converge in all the 

experiments



OBSERVATION ON ACCEPTANCE RATIO

OF VN REQUESTS

 Experiment compares the acceptance ratio of VNs of the proposed

GA based VNE algorithm with some existing embedding

strategies VNE_AC and VNE_Greedy.

 The acceptance ratio is calculated as

Accepted_VN = 
𝑛(𝑉𝑁′)

𝑛(𝑉𝑁)
= 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑁 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
(14)



OBSERVATION ON AVERAGE REVENUE

 While minimizing the fitness function, the average revenue 

earned through the proposed VNE-GA algorithm is compared 

with VNE-AC and VNE-Greedy approach. 

 Experiment is performed for 50,000 time units and the result is 

depicted by a graph in figure

R(Gv(t)) = σ𝑖=0
𝑖=𝐴𝑙𝑙_𝑉𝑁𝛼

𝑖
σ𝑒𝑣 ∈ 𝐸 𝜇 ∗ 𝐸𝑟 𝑒𝑣 + σ𝑛𝑣 ∈ 𝑉 𝜆 ∗ 𝑉𝑟 𝑛𝑣 (15)



OBSERVATION ON NODE UTILIZATION

 The average node utilization of the substrate network is

measured by averaging the stress of all the substrate nodes of the

substrate networks.

 The substrate nodes stress is calculated using following equation

and is defined as the total amount of CPU capacity allocated to

different virtual nodes hosted on the substrate node ns ϵ N.

Stress(ns) = σ𝑛𝑣→𝑛𝑠 𝑉𝑟 𝑛𝑣 (16)



OBSERVATION ON LINK UTILIZATION

 The average link utilization of the substrate network is measured

by averaging the stress of all the substrate links of the substrate

networks.

 The substrate links stress is calculated using following equation

and is defined as the total amount of bandwidth reserved for the

virtual links whose substrate paths pass through the substrate

link es∈L.

Stress(es) = σ𝑒𝑣→𝑒𝑠 𝐸𝑟 𝑒𝑣 (17)



CONCLUSION OF MODEL

 The work addresses the problem of optimal
provisioning of multiple virtual network requests
among multiple infrastructure providers.

 A GA based virtual network embedding algorithm is
proposed to address this NP-class problem.

 The model has been simulated and performance study
is done based on various parameters such as revenue
generation for InPs, acceptance ratio and efficient
node and link utilization.

 Experimental results show that the model performs
very well.

 The comparative study of the proposed models with
few other contemporary models exhibit that on the
mentioned characteristic parameters the proposed
model performs consistently.




