Homogeneous Fredholm Integral Equatiơ",'s of the Second kinds with Degenerate Kemels

Dr. Rajesh Prasad

Assistant Professor

Q1: Find the eigenvalues and eigenfunction of the homogeneous,
integral equation $y(x)=\lambda \int_{0}^{1} e^{x} e^{t} y(t) d t$
Sol: Given that $\quad y(x)=\lambda e^{x} \int_{0}^{1} e^{t} y(t) d t$

$$
\begin{equation*}
\text { Let } C=\int_{0}^{1} e^{t} y(t) d t \tag{2}
\end{equation*}
$$

Then equation (1) reduces to $y(x)=C \lambda e^{x}$

From equation (3) , $y(t)=C \lambda e^{t}$
(4)

$$
C\left[1-\frac{\lambda}{2}\left(e^{2}-1\right)\right]=0
$$

If $C=0$ then equation (4) gives $y(x)=0$. There, assume that for non-zero solution of equation (1), C $\neq 0$. Hence equation ${ }^{(5)}$
reduces to

$$
\begin{equation*}
\lambda=\frac{2}{\left(e^{2}-1\right)} \tag{6}
\end{equation*}
$$

Which is an eigenvalue of equation (1)
Putting the value of λ given by equation (6) in (3), the corresponding eigenfunction is given by

$$
y(x)=\frac{2 C}{\left(e^{2}-1\right)} e^{x}
$$

Therefore, corresponding to eigenvalue $\lambda=\frac{2}{\left(e^{2}-1\right)}$ there
 corresponds the eigenfunction e^{x}.

Q2: Solve the homogeneous Fredholm integral equation of the second kind $\quad y(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) y(t) d t$
Sol: Given that equation (1), then

$$
\begin{gather*}
y(x)=\lambda \int_{0}^{2 \pi}[\sin x \cos t+\cos x \sin t] y(t) d t \\
y(x)=\lambda \sin x \int_{0}^{2 \pi} \cos t y(t) d t+\lambda \cos x \int_{0}^{2 \pi} \sin t y(t) d t \tag{3a,3b}
\end{gather*}
$$

Let $C_{1}=\int_{0}^{2 \pi} \cos t y(t) d t$ and $C_{2}=\int_{0}^{2 \pi} \sin t y(t) d t$
Therefore, then equation (2) reduces to

$$
\begin{array}{r}
y(x)=\lambda C_{1} \sin x+\lambda C_{2} \cos x \\
y(t)=\lambda C_{1} \sin t+\lambda C_{2} \cos t \tag{5}
\end{array}
$$

Using equation (5), then equation (3a) becomes

$$
\begin{gather*}
C_{1}=\int_{0}^{2 \pi} \cos t\left(\lambda C_{1} \sin t+\lambda C_{2} \cos t\right) d t \\
C_{1}-\lambda C_{2} \pi=0 \tag{6}
\end{gather*}
$$

Using equation (5), then equation (3b) becomes

$$
\begin{gather*}
C_{2}=\int_{0}^{2 \pi} \sin t\left(\lambda C_{1} \sin t+\lambda C_{2} \cos t\right) d t \\
\lambda C_{1} \pi-C_{2}=0 \tag{7}
\end{gather*}
$$

Therefore, we have a system of homogeneous linear equations (6) and (7) for determining C_{1} and C_{2}. From non-zero solution of thes system of equations,

$$
\left|\begin{array}{cc}
1 & -\lambda \pi \\
\lambda \pi & -1
\end{array}\right|=0, \quad \lambda= \pm \frac{1}{\pi}
$$

The eigenvalue are given by $\lambda_{1}=\frac{1}{\pi}$ and $\lambda_{2}=-\frac{1}{\pi}$
To determine the eigenfunction corresponding to $\lambda=\lambda_{1}=\frac{1}{\pi}$, in equation (6) and (7), we obtain

$$
\begin{equation*}
C_{1}-C_{2}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}-C_{2}=0 \tag{10}
\end{equation*}
$$

Both equation (9) and (10) gives $C_{2}=C_{1}$, from equation (4), we obtain

$$
y(x)=\frac{C_{1}}{\pi}(\sin x+\cos x)
$$

Taking $\frac{C_{1}}{\pi}=1$, the required eigenfunction $y_{1}(x)$ is given by

$$
\begin{equation*}
y_{1}(x)=(\sin x+\cos x) \tag{11}
\end{equation*}
$$

To determine the eigenfunction corresponding to $\lambda=\lambda_{2}=$ in equation (6) and (7), we get $C_{1}+C_{2}=0$

$$
\text { and } \quad C_{1}+C_{2}=0
$$

Both equation (12) and (13) gives $C_{2}=-C_{1}$, from equation (4) we obtain

$$
y(x)=\frac{C_{1}}{\pi}(\sin x-\cos x)
$$

Taking $\frac{-C_{1}}{\pi}=1$, the required eigenfunction $y_{2}(x)$ is given by

$$
\begin{equation*}
y_{2}(x)=(\sin x-\cos x) \tag{14}
\end{equation*}
$$

From equation (8), (11) and (14), the required eigenvalues and eigenfunction are given

$$
\begin{array}{cc}
\lambda_{1}=\frac{1}{\pi} & y_{1}(x)=(\sin x+\cos x) \\
\lambda_{2}=-\frac{1}{\pi} & y_{2}(x)=(\sin x-\cos x)
\end{array}
$$

Q3: Prove that the homogeneous integral equaस゙in $y(x)=\lambda \int_{0}^{1}(t \sqrt{x}-x \sqrt{t}) y(t) d t$ does not have real eigenvalues and eigenfunction.

Sol: Given that $y(x)=\lambda \int_{0}^{1}(t \sqrt{x}-x \sqrt{t}) y(t) d t$
$y(x)=\lambda \sqrt{x} \int_{0}^{1} t y(t) d t-\lambda x \int_{0}^{1} \sqrt{t} y(t) d t$

$$
\begin{equation*}
\text { Let } C_{1}=\int_{0}^{1} t y(t) d t \text { and } C_{2}=\int_{0}^{1} \sqrt{t} y(t) d t \tag{1}
\end{equation*}
$$

Then equation (1) reduces to $y(x)=\lambda C_{1} \sqrt{x}-\lambda C_{2} x$
From equation (4) $y(t)=\lambda C_{1} \sqrt{t}-\lambda C_{2} t$
Using equation (5), equation(2) becomes

$$
C_{1}=\int_{0}^{1} t\left(\lambda C_{1} \sqrt{t}-\lambda C_{2} t\right) d t
$$

$$
\begin{equation*}
\left(1-\frac{2 \lambda}{5}\right) C_{1}+\frac{\lambda}{3} C_{2}=0 \tag{6}
\end{equation*}
$$

Using equation (5), equation(3) becomes

$$
\begin{align*}
& C_{2}=\int_{0}^{1} \sqrt{t}\left(\lambda C_{1} \sqrt{t}-\lambda C_{2} t\right) d t \\
& -\frac{\lambda}{2} C_{1}+\left(1+\frac{2 \lambda}{5}\right) C_{2}=0 \tag{7}
\end{align*}
$$

For non-zero solution of the system of equation (6) and (7) Using equation (5), equation(3) becomes $\quad D(\lambda)=\left|\begin{array}{cc}1-\frac{2 \lambda}{5} & \frac{\lambda}{3} \\ -\frac{\lambda}{2} & 1+\frac{2 \lambda}{5}\end{array}\right|=0, \quad \lambda= \pm i \sqrt{\sqrt{150}}$ Showing that $D(\lambda) \neq 0$ for any real value of λ. Therefore the system of equations (6) and (7) has unique solution $C_{1}=C_{2}=0$ for all real
λ. Hence, from equation (4) $y(x)=0$, which is zero solution.
Therefore, the given equation does not have real eigenvalue and eigenfunction

Q1: Determine the eigenvalues and eigenfunction of the
homogeneous integral equation
(A)
$y(x)=\lambda \int_{0}^{1} K(x, t) d t$ where $K(x, t)=\left[\begin{array}{ll}t(x+1), & 0 \leq x \leq, \\ x(1+t), & t \leq x \leq 1\end{array}\right.$
(B)
$y(x)=\lambda \int_{0}^{1} K(x, t) d t$ where $K(x, t)=\left[\begin{array}{ll}-e^{-t} \sinh x, & 0 \leq x \leq t \\ -e^{-x} \sinh t, & t \leq x \leq\end{array}\right.$
Q2: Show that the integral equation

$$
y(x)=\lambda \int_{0}^{2 \pi} \sin x \sin 2 t y(t) d t
$$

has no eigenvalues. (Try to yourself)

Thank you

坚

