B.Sc. (Hons.) Biotechnology Core Course 13:
Basics of Bioinformatics and Biostatistics (BIOT 3013)

<u>Unit 5:</u> Multiple sequence alignment

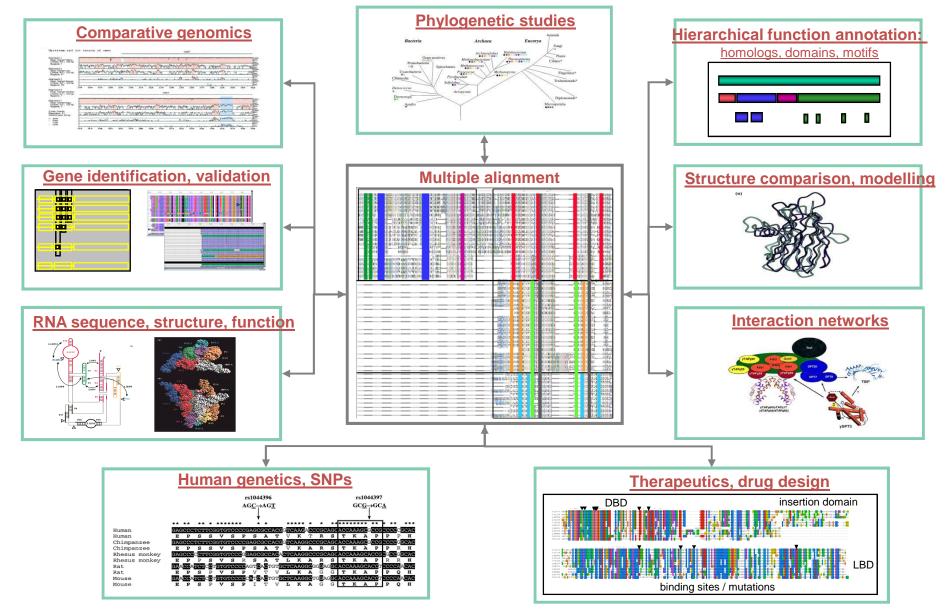
Dr. Satarudra Prakash Singh Department of Biotechnology Mahatma Gandhi Central University, Motihari

Multiple sequence alignment (MSA): Why?

- Pair-wise alignment can concluded that there is probably a functional relationship between the two sequences.
- If it is known that there is a functional similarity amongst a number of sequences, then we can use MSA to find out where the similarity comes from.
- It extract biologically important information (widely dispersed sequence similarities) that can give biologist hints about the evolutionary history of certain sequences.

Why we do multiple alignments?

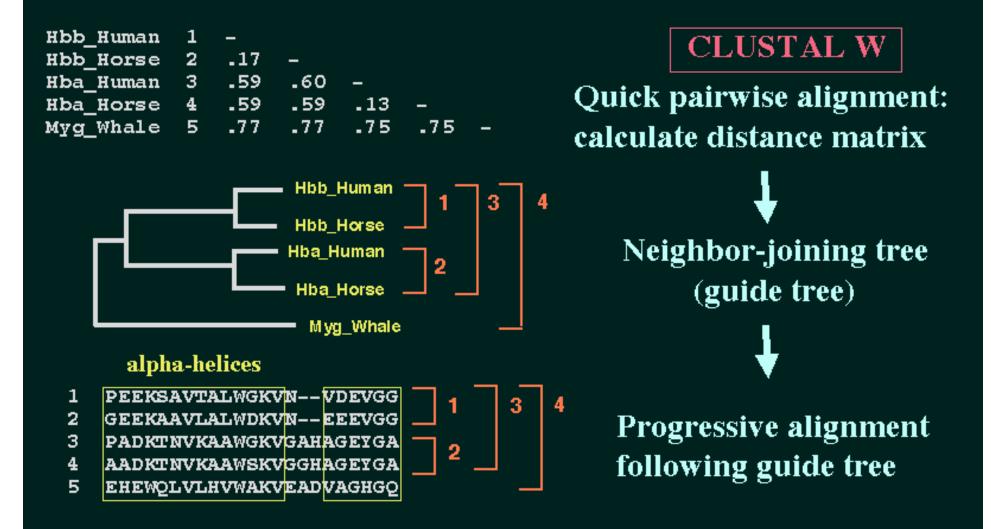
- Active site residues are under evolutionary pressure to maintain their functional integrity and undergo very fewer mutations than less functionally important amino acids.
- MSA is used to study closely related genes or proteins in order to find the evolutionary relationships between genes.
- It identify shared patterns among functionally or structurally related genes.
- It is used characterize protein families and determine the consensus sequence of several aligned sequences.


Example of multiple alignment

Example: part of an alignment of SH2 domains from 14 sequences

		*	*		* **:*			*	:	:	:	::
Ink_rat crk1_mouse nck_human ht16_hydat pip5_human fer_human 1ab2	У	PWFHGPI;	SRVRAAQLY	/QLQGPDA	HGVFLVR	QSESRR-(EYVLTFNLQ	GRAKHL	RLVLTERGQCR	VQHLHFP	SVVD	ML
	S	AWYMGPV:	IRQEAQTRI	LQGQR	HGMFLVR	DSSTCP-(DIVLSVSEN	SRVSHY	IINSLPNRRFK	IGDQEFD	HLPA	ΤΓ
		-WYYGKV:	IRHQAEMAI	LNERGH	EGDFLIR	DSESSP-N	NDFSVSLKAQ	GKNKHF	KVQLK-ETVYC.	IGQRKFS	TMEE:	LV
		-WYHGK I'	IREVAVQVI	LRKGGR-	DGFFLIR	DCGNAP-H	EDYVLSMMFR	SQILHF	QINCLGDNKFS	IDNG-PIFQ	GLDM	LΙ
	K	PWYYDSL;	SRGEAEDM	MRIPR	DGAFLIR	KREGSI)SYAITFRAR	GKVKHC	RINRDG-RHFV	LGTS-AYFE	SLVE.	LV
1mil		-WYHGAI	PRIEAQELI	GKK	QGDFLVR	ESHGKP-(GEYVLSVYSD	GQRRHF	I IQYV-DNMYR)	FEGTGFS	NIPQ	μI
1blj 1shd 1lkkA 1csy	E	EWFHGVLI	PREEVVRLI	LNN	DGDFLVR	ETIRNEE	SQIVLSVCW	NGHKHF	IVQTTGEGNFRI	FEGPPFA	SIQE	LΙ
							GRSISLRYE					
							GQYVLTGLQS	~				
1bfi 1gri	GSVAPVETLEVE											
ign							YCLSVSDFDN					r
							SFSLSVRDFDQ	-				
							SYALCLLHE					·
	HHDEK	TWNVGSSI	VRNKAENLI	GRGKR	DGTFLVR	ESSKQ(GCYACSVVVD	GEVKHC	VINKTATG-YG	FAEPYNLYS	SLKE	LV
	EMK PH	PWFFGKI	PRAKAEEM	LSKQRH	DGAFLIR	ESESAP-(GDFSLSVKFG	NDVQHF	KVLRDGAGKYFI	LWVVKFN	SLNE	LV

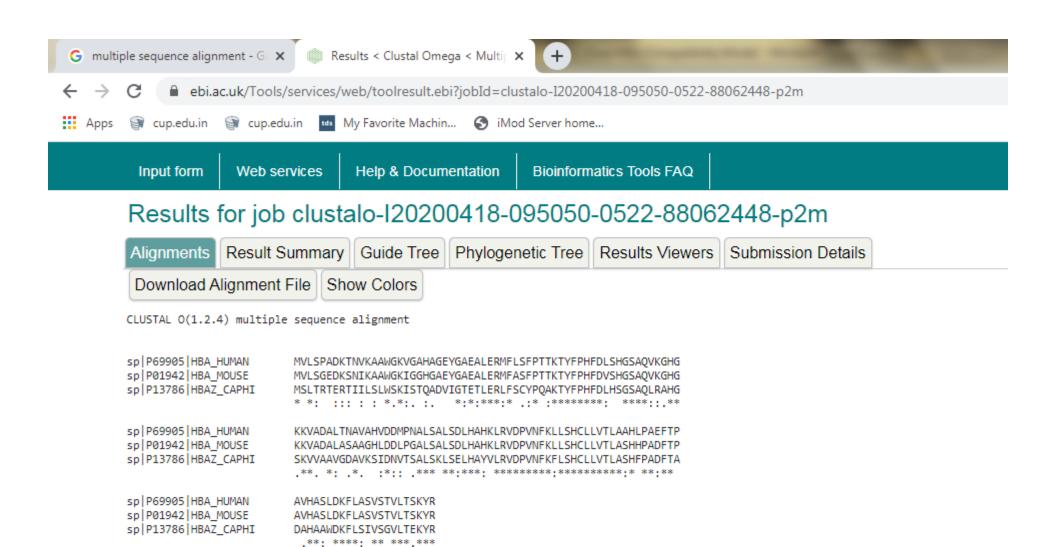
- * conserved identical residues
- : conserved similar residues


Central role of multiple alignments

Multiple Alignment Method

- Compare all sequences pair-wise.
- Perform cluster analysis on the pair-wise data to generate a hierarchy for alignment.
- This may be in the form of a binary tree or a simple ordering.
- Build the multiple alignment by first aligning the most similar pair of sequences, then the next most similar pair and so on.
- Once an alignment of two sequences has been made, then this is fixed.

Overview of ClustalW Procedure


Most popular MSA tool: Clustalw (http://www.ebi.ac.uk/clustalw)

- Both progressive global and local alignments can be done in ClustalW.
- The user has the option to control parameters to make the best alignments (e.g., word size, matrix, gap open, extension, etc.).

Clustalw/ClustalO

- It also provides two phylogenetic trees, a cladogram (equal length of branched tree showing common ancestry) or a phylogram (unequal length of branched tree showing evolutionary distances).
- Alignment can be further edited using the Jalview program (<u>http://www.ebi.ac.uk/jalview</u>).
- The main challenges for MSA is to handle growing data set sizes of nucleic acid and proteins.

Input form	Web services	Help & Documentation	Bioinformatics Tools FAQ		•
Input form	Web services	Help & Documentation	Dioiniormatics tools FAQ		
Enter or pa	aste a set of				
PROTE	IN				
	es in any supporte	- 1 F			
sequence	es in any subbone				
	CONSIGNITY	TOOTONE TONENCERUM			
KKVAD	ALASAAGHLDDL	PGALSALSDLHAHKLRV	DPVNFKLLSHCLLVTLASHH		
KKVAD/ AVHASI >sp P13	ALASAAGHLDDL DKFLASVSTVLT 3786 HBAZ_CAPH	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ	PADFTP 1 PE=3 SV=2	
KKVAD/ AVHASI >sp P13 MSLTR	ALASAAGHLDDL LDKFLASVSTVLT 786 HBAZ_CAPH TERTIILSLWSKIS	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	
KKVAD/ AVHASI >spiP13 MSLTR SKVVA/	ALASAAGHLDDL LDKFLASVSTVLT 786 HBAZ_CAPH TERTIILSLWSKIS	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC FSALSKLSELHAYVLRVD	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ	PADFTP 1 PE=3 SV=2 .RAHG	
KKVAD/ AVHASI >spiP13 MSLTR SKVVA/	ALASAAGHLDDL LDKFLASVSTVLT 786 HBAZ_CAPH TERTIILSLWSKIS	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC FSALSKLSELHAYVLRVD	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	
KKVAD/ AVHASI >spip13 MSLTR SKVVA/ DAHAA	ALASAAGHLDDL LDKFLASVSTVLT 8786 HBAZ_CAPH TERTIILSLWSKIS AVGDAVKSIDNV WDKFLSIVSGVL	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC FSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a example sequence I Clear sequence I
KKVAD/ AVHASI >spip13 MSLTR SKVVA/ DAHAA	ALASAAGHLDDL LDKFLASVSTVLT 786 HBAZ_CAPH TERTIILSLWSKIS	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC FSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a <u>example sequence Clear sequence</u>
KKVAD/ AVHASI >spip13 MSLTR SKVVA/ DAHAA	ALASAAGHLDDL LDKFLASVSTVLT 8786 HBAZ_CAPH TERTIILSLWSKIS AVGDAVKSIDNV WDKFLSIVSGVL	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC FSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a <u>example sequence Clear sequence </u>
KKVAD/ AVHASI >sp P13 MSLTR SKVVA/ DAHAA	ALASAAGHLDDL LDKFLASVSTVLT 8786 HBAZ_CAPH TERTIILSLWSKIS AVGDAVKSIDNV WDKFLSIVSGVL	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC TSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a <u>example sequence Clear sequence </u>
KKVAD/ AVHASI >sp P13 MSLTR SKVVA/ DAHAA Or, upload	ALASAAGHLDDL LDKFLASVSTVLT 3786 HBAZ_CAPH TERTIILSLWSKIS AVGDAVKSIDNVT WDKFLSIVSGVL a file: Choose File	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC TSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a <u>example sequence Clear sequence </u>
KKVAD/ AVHASI >sp P13 MSLTR SKVVA/ DAHAA	ALASAAGHLDDL LDKFLASVSTVLT 3786 HBAZ_CAPH TERTIILSLWSKIS AVGDAVKSIDNVT WDKFLSIVSGVL a file: Choose File	PGALSALSDLHAHKLRV SKYR II Hemoglobin subunit zet TQADVIGTETLERLFSC TSALSKLSELHAYVLRVD TEKYR	DPVNFKLLSHCLLVTLASHH ta OS=Capra hircus GN=HBZ YPQAKTYFPHFDLHSGSAQL	PADFTP 1 PE=3 SV=2 .RAHG	Use a <u>example sequence Clear sequence </u>

PLEASE NOTE: Showing colors on large alignments is slow.

.....

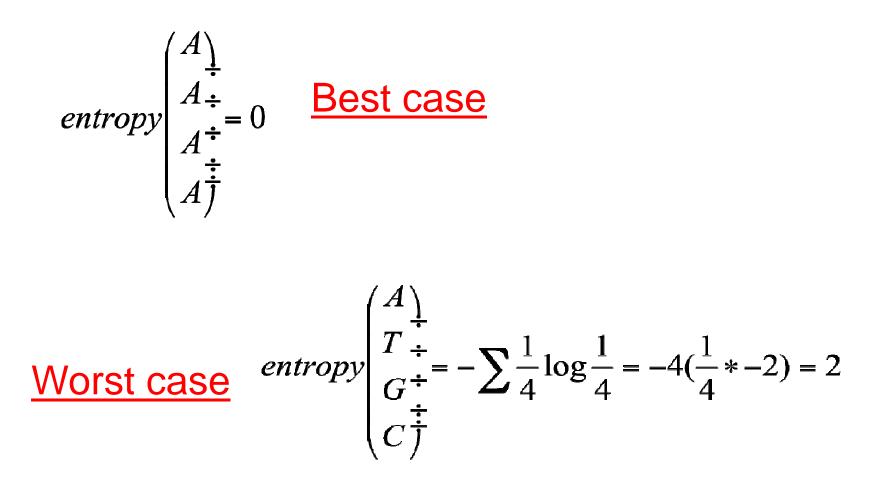
This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.

Scoring of MSA :Entropy score

• Define frequencies for the occurrence of each letter in each column of multiple alignment

 $-p_A = 1, p_T = p_G = p_C = 0$ (1st column)

 $-p_A = 0.75, p_T = 0.25, p_G = p_C = 0$ (2nd column)


 $-p_A = 0.50, p_T = 0.25, p_C = 0.25 p_G = 0 (3^{rd} column)$

• Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X AAA AAT ATC$$

ΔΔΔ

Entropy: Example

Entropy of an Alignment: Example

 $\frac{\text{column entropy}}{-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)}$

A	A	A
A	С	С
A	С	G
A	С	Т

•Column 1 = -[1*log(1) + 0*log0 + 0*log0 + 0*log0] = 0 •Column 2 = -[(¹/₄)*log(¹/₄) + (³/₄)*log(³/₄) + 0*log0 + 0*log0] = -[(¹/₄)*(-2) + (³/₄)*(-.415)] = +0.811 •Column 3 = -[(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄)+(¹/₄)*log(¹/₄) + (¹/₄)*log(¹/₄)] = 4* -[(¹/₄)*(-2)] = +2.0

•Alignment Entropy = 0 + 0.811 + 2.0 = +2.811

References

- <u>https://www.ncbi.nlm.nih.gov/CBBresearch/P</u> <u>rzytycka/download/lectures/PCB_Lect05_Mul</u> <u>tip_Align.pdf</u>
- https://www.genome.jp/tools-bin/clustalw
- <u>https://www.ebi.ac.uk/seqdb/confluence/disp</u> <u>lay/JDSAT/Clustal+Omega+Help+and+Docume</u> <u>ntation</u>
- <u>https://academic.oup.com/bib/article/17/6/1</u>
 <u>009/2606431</u>

Thank you.

Email: sprakashsingh@mgcub.ac.in