Edmond-Karp Algorithm (DAA, M.Tech + Ph.D.)

By:

Sunil Kumar Singh, PhD Assistant Professor, Department of Computer Science and Information Technology

School of Computational Sciences, Information and Communication Technology, Mahatma Gandhi Central University, Motihari Bihar, India-845401

Outline

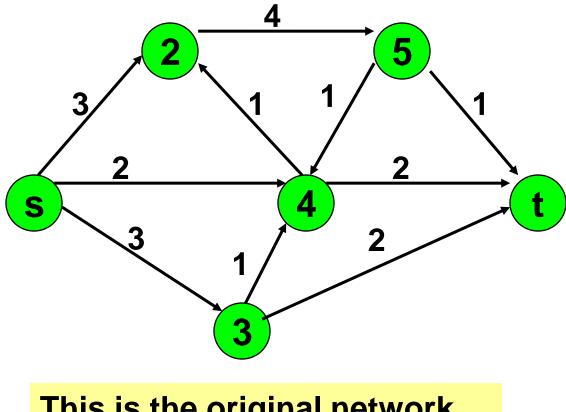
- Edmond-Karp Algorithm
- Conclusion
- References

Edmonds-Karp Algorithm

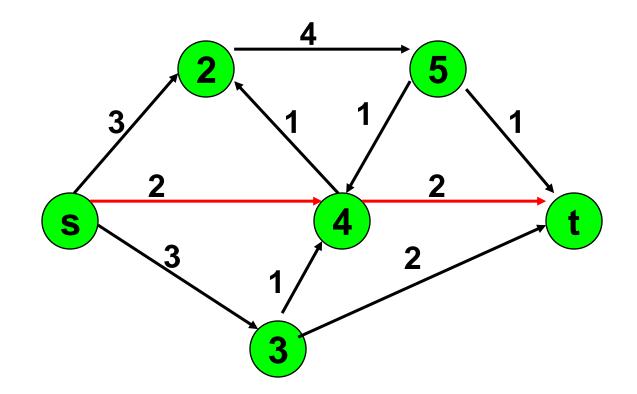
- Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method for computing the maximum flow in a flow network in much mor optimized approach.
- Edmonds-Karp is identical to Ford-Fulkerson except for one very important trait. The search order of augmenting paths is well defined.
- The augmenting path is a shortest path from s to t in the residual graph (here, we count the number of edges for the shortest path).

Edmonds-Karp Algorithm

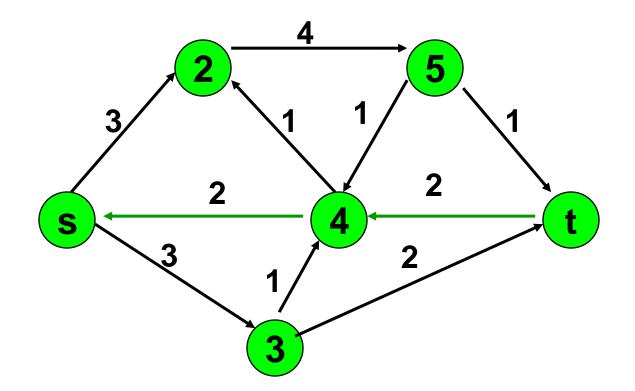
- It uses the breadth-first search approach
- This variant of Ford-Fulkerson algorithm runs in O(nm²)



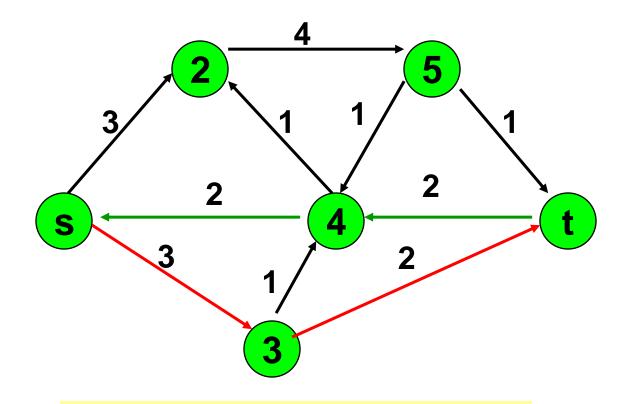
This is the original network.



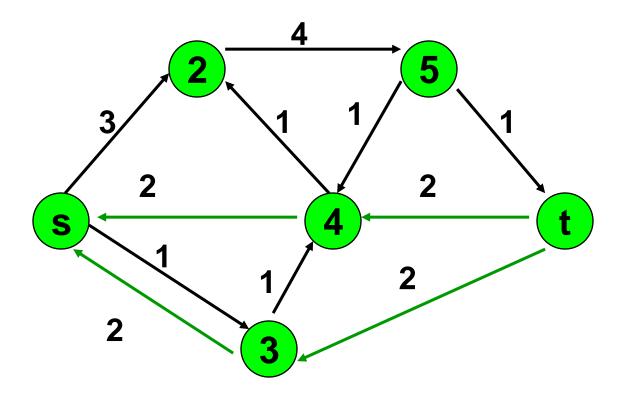
Choose a shortest path from *s* to *t*.



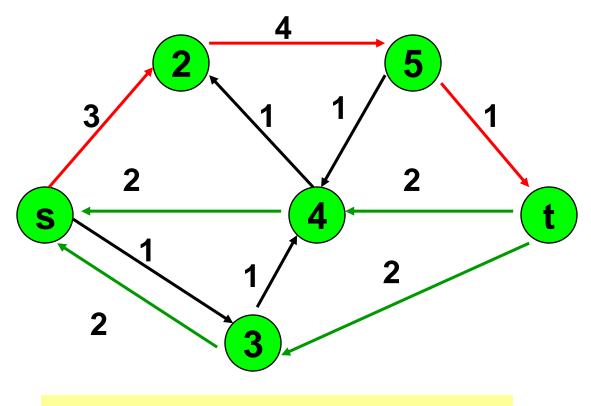
This is residual graph after the 1st augmentation.



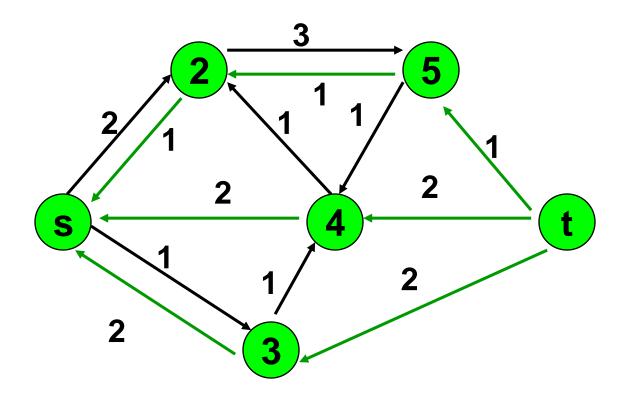
Choose a shortest path from s to t.



The residual graph after the 2nd augmentation.



Choose a shortest path from s to t.



The residual graph after the 3rd augmentation.

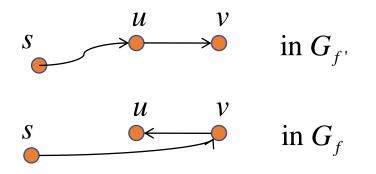
Let $\delta_f(s, x)$ the shortest path distance from s to x in the residual network G_f , where each edge has unit distance. Lemma

When Edmonds - Karp algorithm runs, $\delta_f(s, x)$ increases

monotonically with each flow augmentation.

Proof Denote $\delta_f(x) = \delta_f(s, x)$.

For contradiction, suppose flow f' is obtained from flow fthrough an augmentation and $\delta_{f'}(v) < \delta_f(v)$ for some node v. W.l.g., assume $\delta_{f'}(v)$ is the smallest among such v, i.e., $\delta_{f'}(u) < \delta_{f'}(v) \Rightarrow \delta_{f'}(u) \ge \delta_f(u)$. Suppose (u, v) is on the shortest path from *s* to *v* in $G_{f'}$. Case 1. $(u, v) \in G_f$. $\delta_f(v) \le \delta_f(u) + 1 \le \delta_{f'}(u) + 1 = \delta_{f'}(v), (\rightarrow \leftarrow)$. Case 2. $(u, v) \notin G_f$. Then (v, u) must be on augmenting path in G_f . $\delta_f(v) = \delta_f(u) - 1 \le \delta_{f'}(u) - 1 = \delta_{f'}(v) - 2 \le \delta_{f'}(v), (\rightarrow \leftarrow)$.



(u, v) is critical in G_f if (u, v) has the smallest capacity in augmenting path p in G_f .

Lemma

Each (u, v) can be critical at most (n+1)/2 times. **Proof**

Suppose (u, v) is critical in G_f . Then (u, v) will dispear in next residual graph. Before (u, v) appears again, (v, u) has to appear in augmenting path of a residual graph $G_{f'}$. Thus, we have

 $\delta_{f'}(u) = \delta_{f'}(v) + 1.$

Since $\delta_f(v) \le \delta_{f'}(v)$, we have

 $\delta_{f'}(u) = \delta_{f'}(v) + 1 \ge \delta_f(v) + 1 = \delta_f(u) + 2.$

Theorem

Edmonds - Karp algorithm runs in time $O(|V| \cdot |E|^2)$. **Proof** In every augmentation, there exists an arc critical. Since each arc can be critical at most (n+1)/2 times, there are at most $O(|V| \cdot |E|)$ augmentations. In each augmentation, finding the shortest path

takes O(|E|) time.

References

- 1. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to algorithms*. MIT press, 2009.
- 2. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. "Introduction to algorithms second edition." *The Knuth-Morris-Pratt Algorithm, year* (2001).
- 3. Seaver, Nick. "Knowing algorithms." (2014): 1441587647177.

Thank You