
# **Gene Therapy-I**



Prof. Arttatrana Pal Department of Zoology School of Life Sciences Mahatma Gandhi Central University, Bihar

# What is gene therapy? Why is it used?

- Gene therapy is the application of genetic principles in the treatment of human disease
- Gene therapy = Introduction of genetic material into normal cells in order to:
  - counteract the effect of a disease gene or
  - introduce a new function
- GT is used to correct a deficient phenotype so that sufficient amounts of a normal gene product are synthesized → to improve a genetic disorder

Can be applied as therapy for cancers, inherited disorders, infectious diseases, immune system disorders, etc.

# **History of gene therapy**

- **1930's "genetic engineering" plant/animal breeding** 
  - **60's first ideas of using genes** 
    - therapeutically
- **50's-70's gene transfer developed**
- **70's-80's recombinant DNA technology** 
  - **1990 first GT in humans**
  - **2001 596 GT clinical trials (3464 patients)**

# **Types of gene therapy**

- **1. Monogenic gene therapy** 
  - Provides genes to encode for the production of a specific protein
    - Cystic fibrosis, Muscular dystrophy, Sickle cell disease, Haemophilia, etc.
- 2. Suicide gene therapy
  - Provide 'suicide' genes to target cancer cells for <u>destruction</u>
    - Cancer
- **3. Antisense gene therapy** 
  - Provides a single stranded gene in an 'antisense' (backward) orientation <u>to block the production</u> <u>of harmful proteins</u>
    - AIDS/HIV

## **Different Delivery Systems**

*In vivo* versus *ex vivo* 

- **1.** *ex vivo* cells removed, genetically modified, transplanted back into a patient
  - delivery of genes takes place in the body
- **2.** *in vivo* direct transfer of genetic material into patient
  - delivery takes place out of the body, and then cells are placed back into the body

# **Getting genes into cells**

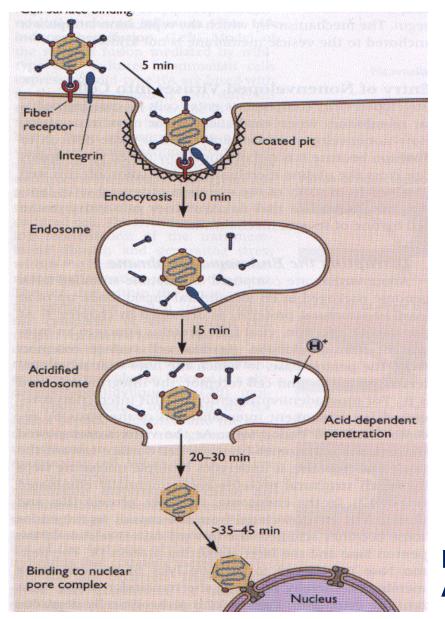
- In vivo versus ex vivo
  - In vivo = intravenous or intramuscular or non-invasive (sniffable)
  - Ex vivo = hepatocytes, skin fibroblasts, haematopoietic cells (bioreactors)
- Gene delivery approaches
  - Physical methods
  - Non-viral vectors
  - Viral vectors

### In vivo techniques

#### *In vivo* techniques usually utilize <u>viral vectors</u>

- Virus = carrier of desired gene
- Virus is usually "crippled" to disable its ability to cause disease
- Viral methods have proved to be the most efficient to date
- Many viral vectors can stable integrate the desired gene into the target cell's genome

**Problem: Replication defective viruses adversely** affect the virus' normal ability to spread genes in the body


- Reliant on diffusion and spread
- Hampered by small intercellular spaces for transport
- Restricted by viral-binding ligands on cell surface → therefore cannot advance far

### **Viral vectors**

"Viruses are highly evolved natural vectors for the transfer of foreign genetic information into cells" [Kay et al 2001]

But to improve safety, they need to be **replication defective** 

### **Viral vectors**



Compared to naked DNA, virus particles provide a relatively efficient means of transporting DNA into cells, for expression in the nucleus as recombinant genes *(example = adenovirus)*.

Flint *et al.* <u>Principles of Virology</u>, ASM Press, 2000]

### **Ideal Vector for Gene Transfer**

- <u>High concentration</u> of virus allowing many cells to be infected or transduced
- Convenience and reproducibility of production
- Ability to transduce dividing and non-dividing cells
- Ability to integrate into a site-specific location in the host chromosome, or to be successfully maintained as stable episome
- A transcriptional unit that can respond to manipulation of its regulatory elements
- Ability to target the desired type of cell
- No components that elicit an immune response

# Introduction of Genes Into Animals

## METHODS MAJOR LIMITATIONS

#### **Calcium Phosphate**

**DEAE** (Diethylaminoethyl) **Dextran** 

**Low Efficiency** 

#### **Cationic Lipids, Liposomes**

**Diethylaminoethyl cellulose (DEAE)** 

Direct DNA Injections Low Efficiency

**Electroporation** 

**Transient expression** 

### Introduction of Genes Into Animals

### **VIRAL VECTORS: MAJOR LIMITATIONS**

Papova (SV40, Polyoma) Size; Host range

Papilloma (BPV)Size; Integration, Transformation

Adeno associated (AAV) Size; production

Lentiviruses

Adeno Size; antigenicity, episomal DNA, toxic

Herpes/Vaccinia Pathogenic, cytotoxic, lytic

**Retroviruses** Inability to infect post-mitotic cells

**Safety, integration** 

#### **Genetic Defects that are Candidates for Gene Therapy**

| 91                                               |                                                             |                                   |                                       |
|--------------------------------------------------|-------------------------------------------------------------|-----------------------------------|---------------------------------------|
| Disease                                          | Defect                                                      | Incidence                         | Target Cells                          |
| Severe combined<br>immunodeficiency (SCID)       | Adenosine deaminase (ADA)<br>in 25% of SCID patients        | Rare                              | Bone-marrow cells or<br>T lymphocytes |
| Lismonhilia A                                    | Factor VII deficiency                                       | 1:10,000 males                    | Liver, muscle, fibroblasts            |
| Hemophilia < B                                   | Factor IX deficiency                                        | 1:30,000 males                    | or bone marrow cells                  |
| Familial<br>hypercholesterolemia                 | Deficiency of low-density<br>lipoprotein (LDL) raeceptor    | 1:1 million                       | Liver                                 |
| Cystic fibrosis                                  | Faulty transport of salt in lung epithelium                 | 1:3000 Caucasians                 | Airways in the lungs                  |
| Hemoglobinopathies<br>thalassemias               | (Structural) defects in the $\alpha$ or $\beta$ globin gene | 1:600 in certain<br>ethnic groups |                                       |
| Gaucher's disease                                | Defect in the enzyme<br>glucocerebrosidase                  | 1:450 in<br>Ashkenazi Jews        | Bone marrow cells,<br>macrophages     |
| α1 antitrypsin deficiency<br>inherited emphysema | Lack of $\alpha_1$ antitrypsin                              | 1:3500                            | Lung or liver cells                   |
| Duchenne<br>muscular distrophy                   | Lack of dystrophin                                          | 1:3000 males                      | Muscle cells                          |

#### Vectors Based on RNA Viruses

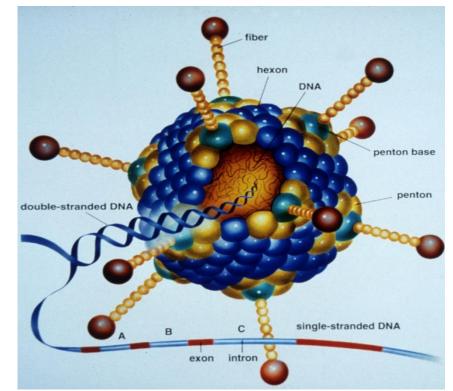
| Features                             | Retroviral                           | Lentiviral                           | Alphavira        |  |
|--------------------------------------|--------------------------------------|--------------------------------------|------------------|--|
| Maximum<br>Insert size               | 7-7.5 kb                             | 7-7.5 kb                             | 5 kb             |  |
| Concentrations<br>viral particles/ml | >10 <sup>8</sup>                     | >10 <sup>8</sup>                     | >10 <sup>9</sup> |  |
| Route of gene<br>delivery            | Ex vivo                              | Ex/In vivo                           | In vivo          |  |
| Integration                          | Yes                                  | Yes                                  | No               |  |
| Duration of<br>expression in vivo    | Shorter than theorized               | Long                                 | Short            |  |
| Stability                            | Good                                 | Not tested                           | Good             |  |
| Ease of Preparation<br>scale up      | Pilot scale up<br>up to 20-50 liters | Not known                            | Not known        |  |
| Immunological<br>problems            | Few                                  | Few                                  | Unknown          |  |
| Pre-existing<br>host immunity        | Unlikely                             | Unlikely, except<br>in AIDS patients | No               |  |
| Safety problems                      | Insertional<br>mutagenesis?          | Insertional mutagenesis?             | Few              |  |

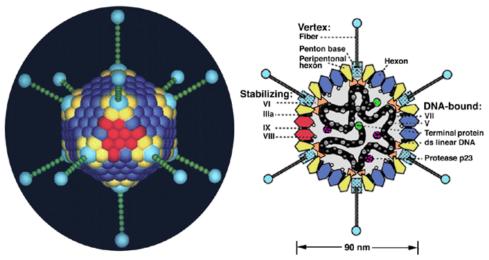
#### Vectors Based on DNA and on DNA Viruses

| Features                             | Adenoviruses                     | Adeno-<br>ssociated viruses                  | Herpesviruses                                 | Vaccinia<br>virus                                      | Naked DNA<br>/Lipid DNA |
|--------------------------------------|----------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|-------------------------|
| Maximum<br>Insert size               | 7.5 kb                           | 4.5kb                                        | ~30kb                                         | >25 kb                                                 | Unlimited size          |
| Concentrations<br>viral particles/ml | >10 <sup>10</sup>                | >10 <sup>12</sup>                            | >10 <sup>8</sup>                              | 107-109                                                | No limitation           |
| Route of gene<br>delivery            | Ex/In vivo                       | Ex/In vivo                                   | Ex vivo                                       | Ex/In vivo                                             | Ex/In vivo              |
| Integration                          | No                               | Yes/No                                       | No                                            | No                                                     | very poor               |
| Duration of<br>expression in vivo    | Short                            | Long                                         | Short/<br>Long in CNS?                        | Short                                                  | Short                   |
| Stability                            | Good                             | Good                                         | Unknown                                       | Good                                                   | Very good               |
| Ease of Preparation<br>scale up      | Easy to scale up                 | Difficult to purify,<br>difficult to scale u | Not yet tried<br>P                            | Vaccine production<br>facilities exist                 | Easy to scale up        |
| Immunological<br>problems            | Extensive                        | Not known                                    | Not known                                     | Extensive                                              | None                    |
| Pre-existing<br>host immunity        | Yes                              | Yes                                          | Yes                                           | Diminishing as<br>unvaccinated<br>population grows     | No                      |
| Safety                               | Inflammatory<br>response, toxici | Inflammatory<br>ty response, toxicity        | Neurovirulence?<br>Insertional<br>mutagenesis | Disseminated vaccinia<br>in immunocompromised<br>hosts | None?                   |

### **Adenoviral vectors**

**Advantages** 


- **Higher titer**
- Efficient transduction of nondividing cells
- In vitro and in vivo


**Disadvantages** 

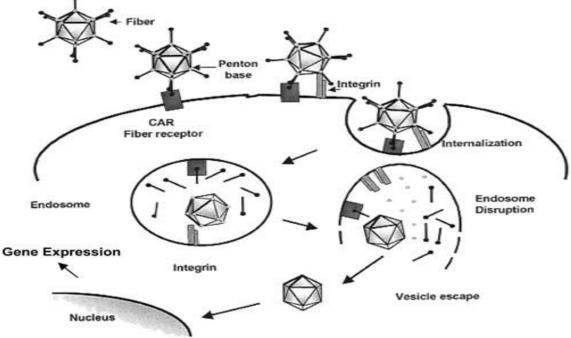
- **\*Toxicity**
- Immunological response
- Prior exposure

# Structure

- Size: 70-90nm
- Non-enveloped icosahedral virus
- Capsid comprised of 3 surface coat proteins
  - Fibers
  - Pentons
  - Hexons
- Contains linear double stranded DNA
- Does not integrate into the host genome
- Replicates as an episomal element in the nucleus






# **Replication Cycle**

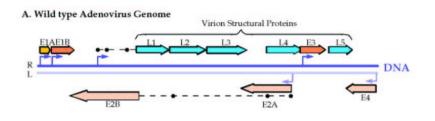
- 1) Absorption and Penetration
  - O Bind to cell surface receptor
  - O Enters cell by endocytosis

### 2) Transcription

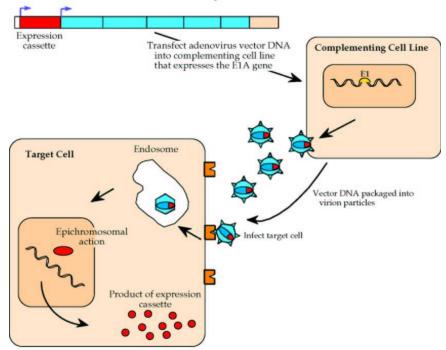
- O <u>Early transcription-</u>Codes for non-structural, regulatory proteins
- O <u>Late transcription-</u>Codes for replication substrates and machinery

#### **3)Assembly 4) Exit- Cell lysis**




Generation of a Non-replicating Adenovirus Expression Vector

# **Adenoviral vectors**


•Double-stranded DNA viruses, usually cause benign respiratory disease; serotypes 2 and 5 are used as vectors

•Can infect <u>dividing and non-</u> <u>dividing cells</u>, can be produced at high titers

•Replication-deficient adenovirus vectors can be generated by replacing the <u>E1</u> or <u>E3 gene</u>, which is essential for replication



B. Adenovirus vector DNA (E1, E3 deleted, expression cassette inserted)



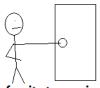
The recombinant vectors are then replicated in cells that express the products of the E1 or E3 gene and can be generated in <u>very high concentrations</u>

• Cells infected with recombinant adenovirus can express the therapeutic gene, but because essential genes for replication are deleted, the vector can't replicate

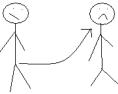
### **Normal Viral Transmission**

#### **Airborne and Waterborne**

#### Transmission Routes: Direct and Indirect Contact


Hand-eye Contact
Fecal/Oral Contact
Venereal Contact
Respiratory Droplet
Transmittance
\*Incubation period of 2-9 days




respiratory transmission



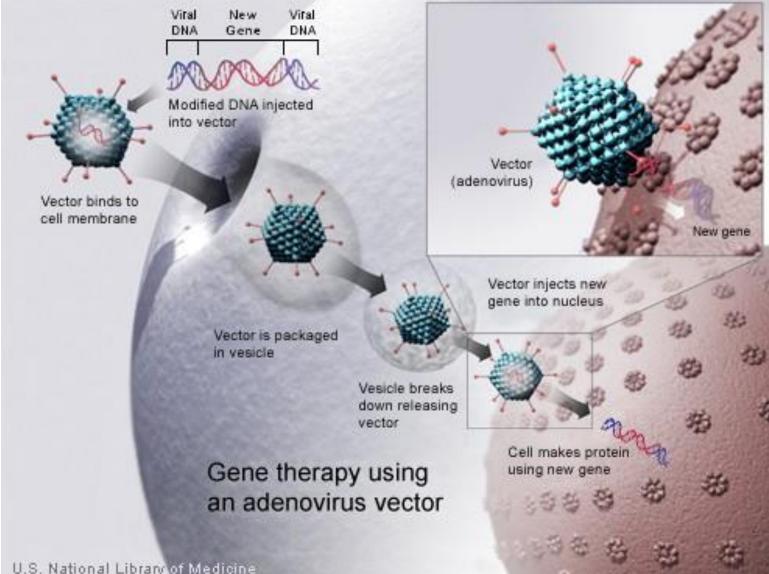
water-borne transmission



fomite transmission



fecal-oral transmission








www.stanford.edu/group/virus/adeno/2005/

# Adenovirus use in Gene Therapy



# Why adenoviruses are good vectors for gene therapy in cancer patients

Gene therapy works by manipulating viruses to contain "good genes" in which they can transport to the cells to code for needed protein/hormone/enzyme/etc

They do not incorporate their genes into the host genome

The Adenovirus is ubiquitous- it has been isolated from a large number of different species with over 100 known serotypes

**Can rapidly infect a large range of human cells** 

Low pathogenicity in humans

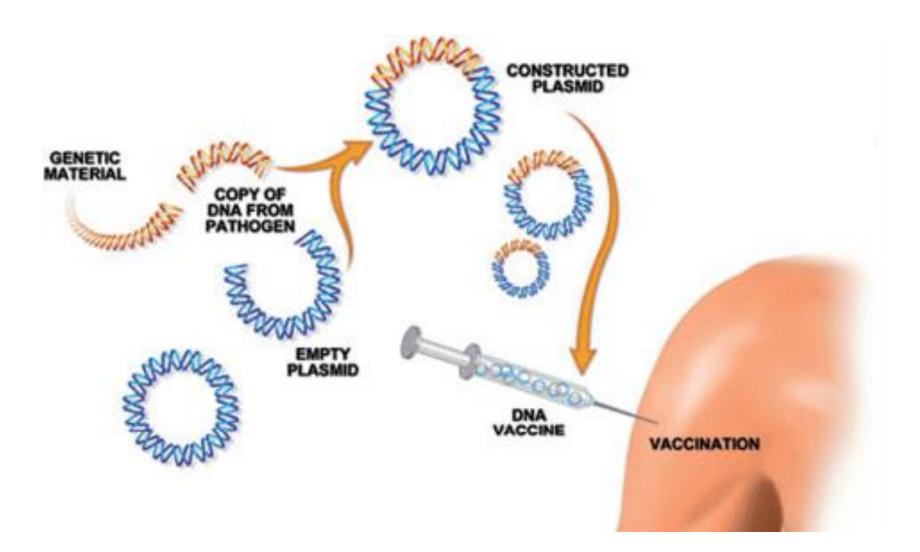
**Can hold large segments of DNA** 

Genome does not undergo rearrangement at high rates

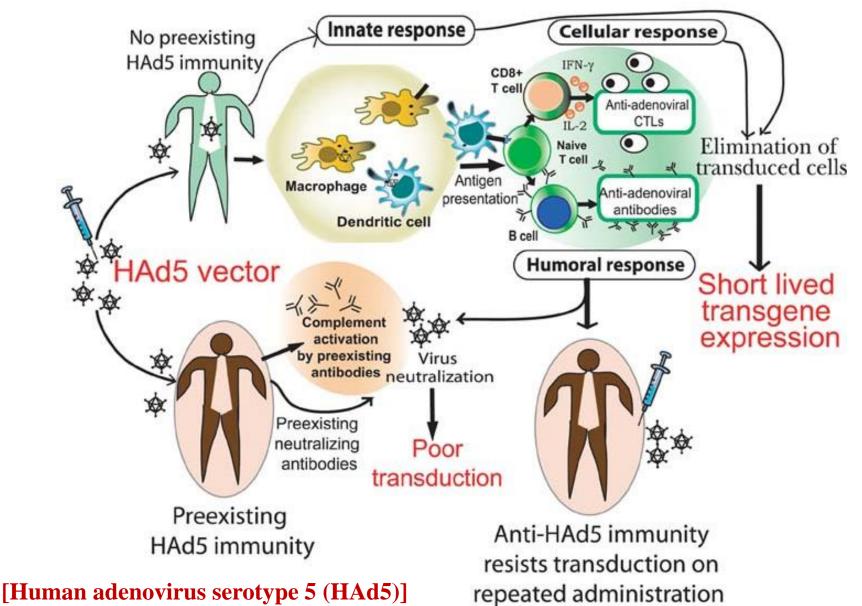
**INA is easy to manipulate with current recombinant DNA techniques** 

### How this virus is used in cancer therapy

- 1) Mutagen compensation
  - O Replacement or inactivation of oncogenes
- 2) Molecular chemotherapy (Suicide)
  - O Also known as suicide of target tumor cells
- **3) Genetic immunopotentiation** 
  - Modifies tumor or immune cells to amplify immunological recognition of neoplastic cells
- 4) Genetic modulation of resistance/sensitivity
  - Modify sensitivity or resistance of cells to chemotherapy (Chemoprotection)
- 5) Antiangiogenic gene therapy (tumor suppressor)
  - O Targets the development of new vessels in tumor tissue, inhibiting its growth


## **Cancer Trials with**

| Table 2. Ongoing phase II clinical trials of gene therapy with adenoviral vectors for treatment of cancer |                          |                              |             |                                 |                      |               |
|-----------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------|---------------------------------|----------------------|---------------|
| Indication                                                                                                | Gene<br>delivered        | Action                       | Combination | Route of administration         | n of pts.<br>to date | Investigators |
| Head and neck cancer                                                                                      | E1b del                  | Cytolysis                    | Chemo       | Intratumoral                    | 30                   | Link          |
| Prostate cancer                                                                                           | p53                      | Gene transfer                |             | Intratumoral                    | n/c                  | Logothetis    |
| Head and neck cancer                                                                                      | p53                      | Gene transfer                | Chemo       | Intratumoral                    | 78                   | Breau         |
| NSCLC                                                                                                     | p53                      | Gene transfer                | Chemo       | Intratumoral                    | n/c                  | Dobbs         |
| Head and neck cancer                                                                                      | p53                      | Gene transfer                |             | Intratumoral                    | 39                   | Dreicer       |
| NSCLC                                                                                                     | p53                      | Gene transfer                | XRT         | Intratumoral                    | 6                    | Swisher       |
| Melanoma                                                                                                  | MART/1<br>+ gp100        | Vaccination                  | IL-2        | Subcutaneous                    | 36                   | Haluska       |
| Hepatic metastases<br>from colon cancer                                                                   | p53                      | Gene transfer                | Chemo       | Intrahepatic                    | n/c                  | Venook        |
| Prostate cancer                                                                                           | HSV-tk                   | Suicide with<br>Valacyclovir | XRT         | Intratumoral                    | 50                   | Butler        |
| Prostate cancer                                                                                           | PSA replicative<br>virus | Cytolytic PSA<br>guided      | XRT         | Intratumoral<br>and intravenous | n/c                  | Terris        |
| NSCLC                                                                                                     | GM-CSF                   | Cytokine<br>vaccination      |             | Intradermal                     | 22                   | Smith II      |
| Renal cell carcinoma                                                                                      | Mod B-7.1                | Immuno-<br>stimulation       | IL-2        | Subcutaneous                    | n/c                  | Anonia        |
| Chronic lymphocytic<br>leukemia                                                                           | CD 154                   | Immuno-<br>stimulation       |             | Intravenous                     | n/c                  | Wierda        |


Abbreviations: Chemo = chemotherapy; del = deleted; HSV-tk = herpes simplex virus thymidine kinase; IL-2 = interleukin-2; n/c = not communicated; NSCLC = non-small cell lung cancer; PSA = prostate-specific antigen; XRT = radiotherapy

Source: Journal of Gene Medicine website (http://www.wiley.co.uk/wileychi/genmed)

# Adenovirus use as a vector in vaccines



### Using a Human Adenovirus Vector in Vaccination



### Adenovirus vaccine use in humans

Human Adenovirus Serotypes

**Over 100 Known Serotypes** 

Most Common:

•HA-vd4

•HA-vd 7

# Diagnosis

**Respiratory Tract Infection** 

- Common cold symptoms
- Sore Throat
- Severe cough
- Swollen lymph nodes
- Headache
- Non-productive "croupy" cough

# Diagnosis

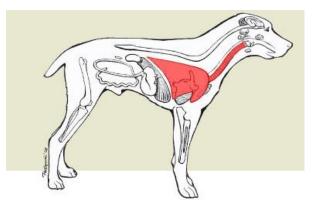
#### **Intestinal Tract Infection**

- Abrupt onset of water diarrhea
- Fever
- Abdominal Tenderness
- Vomiting

#### NB: Both cases have very similar symptoms to common cold and influenza

- Respiratory secretion culture
- Stool culture
- Chest x-ray
- Blood work

# Adenovirus vaccine use in tracheobronchitis "kennel cough"


•CA-v1: causes Infectious <u>Canine</u> <u>Hepatitis</u>

•CA-v2: causes Infectious Tracheobronchitis

**-Type 2-Measl Canine Distemper-Adenovirus es-Parainfluenza Vaccine is a Modified Live Vaccine** 

-Vaccination against CAdv-2 is done through a 5-way or 7-way vaccine in which other infectious viral strains are vaccinated against.

-Administered in 2 forms: Intranasal & SubQ -Freeze-Dried and stored at 2-7°C





# Future work using adenovirus as a vector

O The majority of clinical trials done using the adenovirus in gene therapy have been phase 1

• Phase 1 trials are used to determine safety, feasibility, and toxicity of the process

O The Phase 1 trials have set the stage for future work with the next generation of Adeno vectors that will show less stimulation of the host immune system and can be selectively targeted to specific tissues

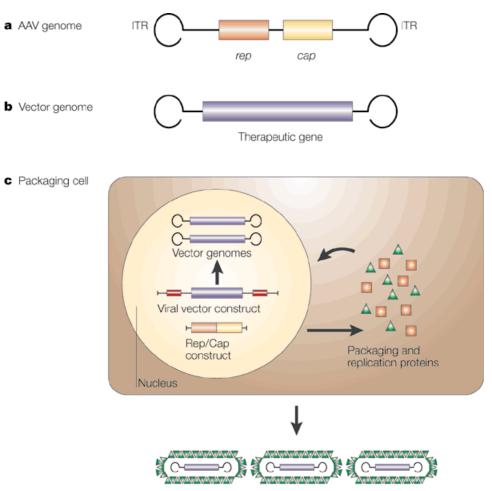
OLive recombinant adenovirus vaccine are being developed

- Provides hope for practitioners in using a more economical vaccine that provides a longer lasting immunity
- Ongoing research is aimed at determining effectiveness of recombinant vaccines in animals

#### **Adenoviral vectors- Limitations**

Adenoviral vectors can <u>infect cells in vivo</u>, causing them to express high levels of the transgene. However, expression lasts for only a short time (5-10 days post-infection)

**Immune response** is the reason behind the short-term expression


Immune reaction is potent, eliciting both the cellkilling "cellular" response and the antibody producing "humoral" response

Humoral response results in <u>generation of</u> <u>antibodies</u> to adenoviral proteins and prevents any subsequent infection if a second injection of the recombinant adenovirus is given

### Adeno-associated viral vectors



• It has two genes (cap and rep), sandwiched between inverted terminal repeats (ITRs) that define the beginning and the end of the virus and contain the packaging sequence



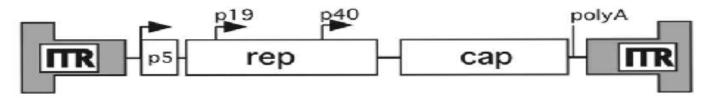
• The <u>cap gene encodes viral capsid proteins</u> and the rep gene product is involved in viral replication and integration

• It can infect a variety of cell types and in the presence of the rep gene product, the viral DNA can integrate preferentially into <u>human chromosome 19</u>

### **Adeno-associated viral vectors**

To produce an AAV vector, the rep and cap genes are replaced with a transgene

The total length of the insert <u>cannot exceed 4.7 kb</u>, the length of the wild type genome


Production of the recombinant vector requires that rep and cap are provided in <u>trans along with the helper virus</u> gene products

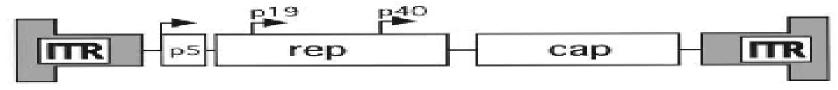
The current method is to <u>cotransfect two plasmids</u>, <u>one</u> for the vector and another for <u>rep and cap into cells</u> infected with adenovirus

This method is cumbersome, low yielding and prone to contamination with adenovirus and wild type AAV

Interest in AAV vectors is due to their integration into the host genome allowing prolonged gene expression

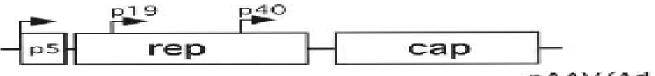
# Generation of adeno-associated virus vector




wild-type AAV

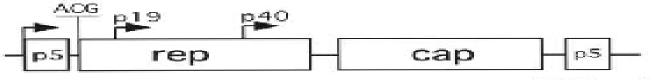


AAV vector (psub201)



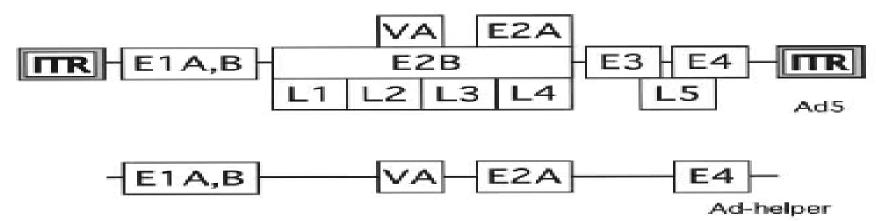


AAV vector (pD-10)




wild-type AAV

#### AAV packaging plasmids








AAV-packaging

AAV helper plasmids



### **Characteristics of AAV vector**

#### **Advantages**

- Integration and persistent expression
- No insertional mutagenesis
- Infecting dividing and nondividing cells
- Stable expression
- Safe

#### **Disadvantages**

- Size limitation, 4.9 kb (Small genome limits size of foreign DNA)
- Low titer of virus, low level of gene expression
- Labor intensive production
- Status of genome not fully elucidated

Please Follow Gene Therapy II