# Lecture Notes for Rietveld Method

#### (Advanced Physical Tools and Techniques : PHYS5002)



Dr. Pawan Kumar Assistant Professor Department of Physics Mahatma Gandhi central university Motihari-845401,Bihar

# Structural Refinement based on the Rietveld Method



# The most important part: Data collection!

- Without high quality data, even the best program can't help you!
- Choice of instrument
  - Resolution
  - Accessible angular range
  - "Tricks" you can play
- Sample preparation
  - Particle size
  - Surface roughness
  - Homogeneity
  - Preferred orientation
- Instrument alignment, sample height and other errors

# Experimental setup

- Make sure that the instrument is well aligned before collecting data!
  - Zero point
- Choose slits that will keep the full beam footprint on the sample at all angles (otherwise your low angle intensities will be off)!
- The sample height needs to be correct, as incorrect sample height shifts the peaks
- Long counting times improve the signal to noise ratio and facilitate the extraction of integrated intensities
- Choose a low background sample holder (e.g., metal, not plastic)



# Effects of sample height displacement



The sample should be sufficiently large that the beam will be always entirely inside its volume/surface (for Bragg-Brentano check at low angle and sample thickness/transparency).



On the right pattern, at low angle the beam goes out of the sample reducing relative peaks intensities and increasing air scattering/ background

# THE STEP SIZE

- The step size should be compatible with the line broadening characteristics and type of analysis.
- In general 5-7 points in the half upper part of a peak are sufficient to define its shape.
- Slightly more points are preferred in case of severe overlapping.
- A little more for size-strain analysis.
- Too much points (too small step size) do not increase our resolution, accuracy or precision, but just increase the noise at equal total collection time.
- The best solution is to use the higher step size possible that do not compromise the information we need.
- Normally highly broadened peaks => big step size => less noise as we can increase the collection time per step (> 0.05)

very sharp peaks => small step size (from 0.02 to 0.05 for Bragg-Brentano)



### **Diffraction Peak Intensities**

#### **Structure Factor:**

X-ray case:

$$F_{(hkl)} = \sum_{j} f_{j} \exp\left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right] \exp\left[-B_{j} \sin^{2}\theta / \lambda^{2}\right]$$

#### Neutron case:

$$F_{(hkl)} = \sum_{j} b_{j} \exp\left[2\pi i \left(hx_{j} + ky_{j} + lz_{j}\right)\right] \exp\left[-B_{j} \sin^{2}\theta / \lambda^{2}\right]$$

#### **Powder Peak Intensities:**

$$I_{(hkl)} = s p_{(hkl)} L_{\theta} A_{\theta} P_{(hkl)} \left| F_{(hkl)} \right|^{2}$$
$$I_{(hkl)} \propto \left| F_{(hkl)} \right|^{2}$$

 $\begin{array}{ll} F_{(hkl)} &= structure\ factor\\ f_{j} &= X - ray\ form\ factor\\ b &= neutron\ scatt.\\ length\\ h,k,l &= Miller\ indices\\ x_{jr}\ y_{jr}\ z_{j} &= atomic\\ coordinates\\ of\ atom\ j\\ \end{array}$   $\begin{array}{ll} B_{j} &= thermal\ parameter\\ \theta &= diffraction\ angle\\ \lambda &= wavelength\\ \Sigma & over\ entire\ unit\ cell\\ I(hkl) &= intensity \end{array}$ 

#### **Correction factors:**

- s = scale factor
- L = Lorentz-polarization
- *p* = *multiplicity*
- A = absorption correction
- P = preferred orientation

# Why Neutrons?

#### Neutrons have No Charge!

- Highly penetrating
- Nondestructive

#### Neutrons have a Magnetic Moment!

- Magnetic structure
- Fluctuations
- Magnetic materials

#### Neutrons have Spin!

- Polarized beams
- Atomic orientation
- Coherent and incoherent scattering

The **Energies** of neutrons are similar to the energies of elementary excitations!

- Molecular Vibrations and Lattice modes
- Magnetic excitations

The Wavelengths of neutrons are similar to atomic spacing!

- Sensitive to structure
- Gathers information from 10<sup>-10</sup> to 10<sup>-7</sup> m
- Crystal structures and atomic spacings

Neutrons probe Nuclei!

- Light atom sensitive
- Sensitive to isotopic substitution



### **Powder Data Analysis**

- 1) Record Powder Diffractogram (neutron and/or X-ray)
- 2) Identify the phase(s) (X-ray database)
- 3) Index phase (X-ray or neutron), i.e. find unit cell (i.e. crystal system)
- 4) Identify space group (X-ray or neutron)
- 5) If a structural model is available (isostructural compound known) proceed with Rietveld refinement
- 6) If no structural model is known proceed with ab-initio structure solution
- 7) Consider X-ray and neutron combined analysis
- 8) Consider different wavelengths
- 9) Consider different temperatures

# **Rietveld Method**

- The Rietveld method refines user-selected parameters to minimize the difference between an experimental pattern (observed data) and a model based on the hypothesized crystal structure and instrumental parameters (calculated pattern)
- can refine information about a single crystal structure
  - confirm/disprove a hypothetical crystal structure
  - refine lattice parameters
  - refine atomic positions, fractional occupancy, and thermal parameter
- refine information about a multiphase sample
  - determine the relative amounts of each phase



#### **Requirements of Rietveld Method**

- High quality experimental diffraction pattern
- A structure model that makes physical and chemical sense
- Suitable peak and background functions

### **Describing the Crystal Structure**

- Space group
- Lattice parameters
- Atomic positions
- Atomic site occupancies
- Atomic thermal parameters
  - isotropic or anisotropic

# Where to get crystal structure information

- check if the structure is already solved
  - websites
    - Inorganic Crystal Structure Database (ICSD) available as free demo version
    - Crystallography Open Database http://www.crystallography.net/
    - Mincryst <u>http://database.iem.ac.ru/mincryst/index.php</u>
    - WebMineral http://www.webmineral.com/
  - databases
    - PDF4 from the ICDD
    - Linus Pauling File from ASM International
    - Cambridge Structure Database
  - literature
    - use the PDF to search ICSD listings and follow the references
- look for similar, hopefully isostructural, materials
- index the cell, and then try direct methods or ab-initio solutions

# How many parameters can we refine?

• Each diffraction peak acts as an observation

theoretically, refine n-1 parameters for n diffraction peaks

- For refining a tetragonal crystal structure, there might be:
  - scale factor
  - 2<sup>nd</sup> order polynomial background: 3 parameters
  - 2 lattice parameters
  - no atomic positions (all atoms are fixed)
  - 3 or 4 thermal parameters
  - 3 or 4 occupancy factors
  - zero shift and specimen displacement
  - 5 profile shape parameters

The Rietveld method is considered a milestone in crystal structure refinement.

The basic idea behind the Rietveld method is the calculation of the entire powder pattern using a variety of different refinable parameters.

| Refinable Parameters:     |                       |
|---------------------------|-----------------------|
| <u>Global parameters:</u> | For each phase        |
| zero point                | atomic positions      |
| instrumental profile      | thermal parameters    |
| profile asymmetry         | site occupancies      |
| background parameters     | scale factor          |
| absorption                | lattice parameters    |
|                           | preferred orientation |
|                           | crystallite size      |
|                           | strain                |
|                           | magnetic vectors      |

# How do you know if a fit is good?

- difference pattern
- Residuals R
  - **R** is the quantity that is minimized during least-squares or other fitting procedures
  - **R**<sub>wp</sub> is weighted to emphasize intense peaks over background
  - **R**<sub>exp</sub> estimates the best value R for a data set
    - an evaluation of how good the data are
  - **R**<sub>Bragg</sub> tries to modify the R for a specific phase

GOF (Chi<sup>2</sup>)

- The easiest way to get low Chi<sup>2</sup> values is to collect noisy data
- $R_{\mathbf{B}}$  gives information about the agreement between the structural model and the pattern
- The most important judgment is in all cases the visual judgment!

R-pattern, **R**<sub>p</sub>:

$$R_p = \frac{\sum |y_i - y_{ci}|}{\sum y_i}$$

*R*-weighted pattern, 
$$\mathbf{R}_{wp}$$
:  $R_{wp} = \left(\frac{\sum w_i (y_i - y_{ci})^2}{\sum w_i (y_i)^2}\right)^{1/2}$ 

- R-Bragg factor, **R**<sub>B</sub>:
  - R-expected, **R**<sub>e</sub>:



 $R_{B} = \frac{\sum \left| I_{(hkl)}('obs') - I_{(hkl)}(calc) \right|}{\sum I_{i}('obs')}$ 

Goodness of fit, **S**:  $S = \frac{R_{wp}}{R_o}$ 

# **R. Young's Refinement Strategy**

- 1. scale factor
- 2. zero shift
- 3. linear background
- 4. lattice parameters
- 5. more background
- 6. peak width, w
- 7. atom positions
- 8. preferred orientation
- 9. isotropic temperature factor B
- 10. u, v, and other profile parameters
- 11. anisotropic temperature factors

# **Rietveld Programs**

- Free
  - GSAS + ExpGUI
  - Fullprof
  - Rietica
  - PSSP (polymers)
  - Maud
  - PowderCell (mostly for calculating patterns and transforming crystal structures, limited refinement)
- Commercial
  - PANalytical HighScore Plus
  - Bruker TOPAS (also an academic)
  - MDI Jade or Ruby

# **Features Available in Fullprof**

- Choice of peak shape for each phase
- Background: fixed, refinable points, polynomial function, Fourier series ...
- Multi phase (up to 16 phases)
- Preferential orientation
- Absorption correction for cylinder and flat plate sample shape
- hkl dependence FWHM for strain and size effects
- Quantitative analysis

**PCR** file

Atomic distances and angles calculations



**Minimal input:** 

Input control file (extension '.*pcr*'): PCR-file Model, crystallographic/magnetic information



➔ Many variables and options

➔ Complex to handle

Hint: copy an existing
(working) PCR-file and modify
it for the user case, or...
USE the new GUI: EdPCR

# **Output Files**

| > | . OUT | output file of the calculation: details of refinement,<br>correlation matrix, intensities, FWHM, 20 <sub>H</sub> ,                    |
|---|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| ۶ | . SUM | summary of the .OUT file                                                                                                              |
| ۶ | .BAC  | background file                                                                                                                       |
| ۶ | . PRF | $\textbf{Y}_{\text{obs}}, \textbf{Y}_{\text{calc}}, \textbf{Y}_{\text{obs}} \textbf{-} \textbf{Y}_{\text{calc}}, 2 \theta_{\text{H}}$ |
| ۶ | . RPA | summary of refined parameters                                                                                                         |
| ۶ | . SYM | list of symmetry operators                                                                                                            |
| ۶ | . FOU | hk/and F² list for Fourier maps                                                                                                       |
| ۶ | . HKL | complete list of reflections for each phase                                                                                           |
| ≻ | .MIC  | microstructural information                                                                                                           |

### **Quantitative Phase Analysis**

 $W_{j} = \frac{S_{j}Z_{j}M_{j}V_{j} / t_{j}}{\sum_{i}^{N} S_{i}Z_{i}M_{i}V_{i} / t_{i}}$ 

where,  $W_j$  is the weight fraction for the jth phase;  $S_j$  is scale factor for the jth the phase;  $Z_j$  is the number formula units per cell for the jth phase;  $M_j$  is the mass of the formula unit;  $V_j$  is the unit cell volume;  $t_j$  Brindley coefficient that comes into effect when the linear absorption coefficients of phases in powder differ a lot to each other. >Do not start by refining all parameters as the same time !

- 1- scale factor
- 2- + zero shift of detector, 1<sup>st</sup> background parameter and lattice parameters
- 3- + atomic positions, overall Debye-Waller factor
- 4- + asymmetry parameters
- 5- + atom occupancies (if required)
- 6- + individual isotropic thermal parameters
- 7- + additional background parameters
- 8- + instrumental or physical aberrations
- In all cases, it is essential to plot frequently the calculated and experimental patterns: examination of the difference plot is a quick and efficient method to detect blunders in the model or in the input file which control the refinement process

### References

- 1. The Rietveld Method by R.A. Young.
- 2. Fundamentalsof powder diffraction and structural characterization of materials by Pecharsky, Vitalij K., Zevalij and Peter Y., 2009.
- 3. Manual of Fullprof Software
- 4. Powder Diffraction: Theory and practice, R E Dinnerbier and Simon Billinge