Operations for fuzzy sets: union, intersection, complement

- ▶ Given two fuzzy sets $\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) | x \in X\}$ and $\tilde{B} = \{(x, \mu_{\tilde{B}}(x)) | x \in X\}$ over the same universe of discourse X, we can define operations of union, intersection and complement. We define:
- ▶ the *union* of the fuzzy sets \tilde{A} si \tilde{B} as the fuzzy set $\tilde{C} = \tilde{A} \cup \tilde{B}$, given by $\tilde{C} = \{(x, \mu_{\tilde{C}}(x)) | x \in X\}$, where

$$\mu_{\tilde{\mathcal{C}}}(x) = \max(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

▶ the *intersection* of the fuzzy sets \tilde{A} and \tilde{B} as the fuzzy set $\tilde{D} = \tilde{A} \cap \tilde{B}$, given by $\tilde{D} = \{(x, \mu_{\tilde{D}}(x)) | x \in X\}$, where

$$\mu_{\tilde{D}}(x) = \min(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x))$$

▶ the *complement* of \tilde{A} in X as the fuzzy set $\tilde{E} = \mathbb{C}_{\tilde{A}}X$ given by $\tilde{E} = \{(x, \mu_{\tilde{E}}(x)) | x \in X\}$, where

$$\mu_{\tilde{E}}(x) = 1 - \mu_{\tilde{A}}(x)$$

Operations with fuzzy sets: inclusion, equality

- ▶ inclusion of fuzzy sets: given two fuzzy sets \tilde{A} and \tilde{B} included in X, the inclusion $\tilde{A} \subseteq \tilde{B}$ takes place iff $\mu_{\tilde{A}}(x) \leq \mu_{\tilde{B}}(x)$, $(\forall)x \in X$
- equality of two fuzzy sets: two fuzzy sets \tilde{A} and \tilde{B} included in X are equals iff $\mu_{\tilde{A}}(x) = \mu_{\tilde{B}}(x)$, $(\forall)x \in X$
- ▶ Equivalently, two fuzzy sets \tilde{A} and \tilde{B} included in X are equals iff $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$

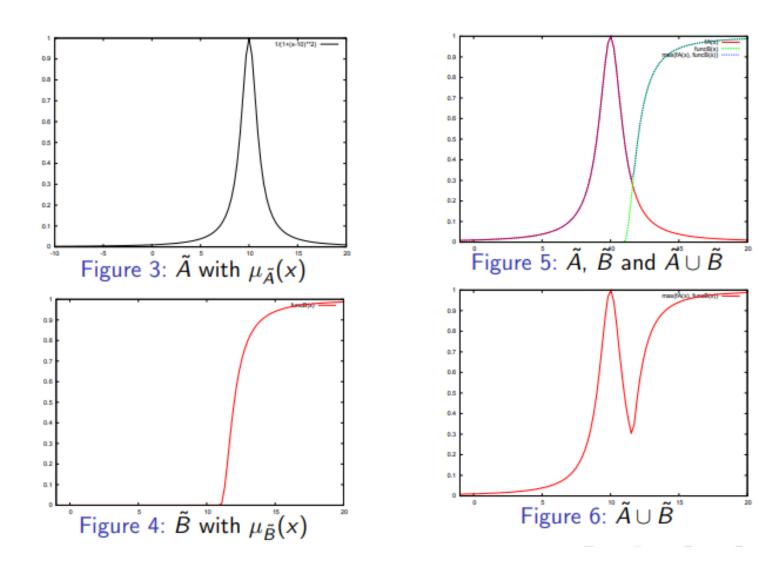
Operations with fuzzy sets: examples

1. Determine the union and intersection of the fuzzy sets $\hat{A} =$ "comfortable house for a 4 persons - family" and $\tilde{B}=$ "small house", where $\tilde{A} = \{(1,0.1), (2,0.5), (3,0.8), (4,1.0), (5,0.7), (6,0.2)\}$ and $\tilde{B} = \{(1,1), (2,0.8), (3,0.4), (4,0.1)\}:$ $\tilde{A} \cup \tilde{B} = \{(1, \max(0.1, 1)), (2, \max(0.5, 0.8)), (3, \max(0.8, 0.4)), (3, \max(0.8, 0.4)), (3, \max(0.8, 0.4)), (4, \max(0.8, 0.8)), (4, \max(0.8, 0.8)$ $(4, \max(1, 0.1)), (5, \max(0.7, 0)), (6, \max(0.2, 0)) =$ $\{(1,1),(2,0.8),(3,0.8),(4,1),(5,0.7),(6,0.2)\}$ $\hat{A} \cap \hat{B} = \{(1, \min(0.1, 1)), (2, \min(0.5, 0.8)), (3, \min(0.8, 0.4)), (3, \min(0.8, 0.4)), (3, \min(0.8, 0.4)), (4, \min(0.8, 0.8)), (4, \min(0.8, 0.8)$ $(4, \min(1, 0.1)), (5, \min(0.7, 0)), (6, \min(0.2, 0)) =$ $\{(1,0.1),(2,0.5),(3,0.4),(4,0.1),(5,0),(6,0)\}$ $\tilde{A} \cup \tilde{B}$ can be read as "comfortable house for a 4 persons family or small", and $\tilde{A} \cap \tilde{B}$ as "comfortable house for a 4 persons - family and small"

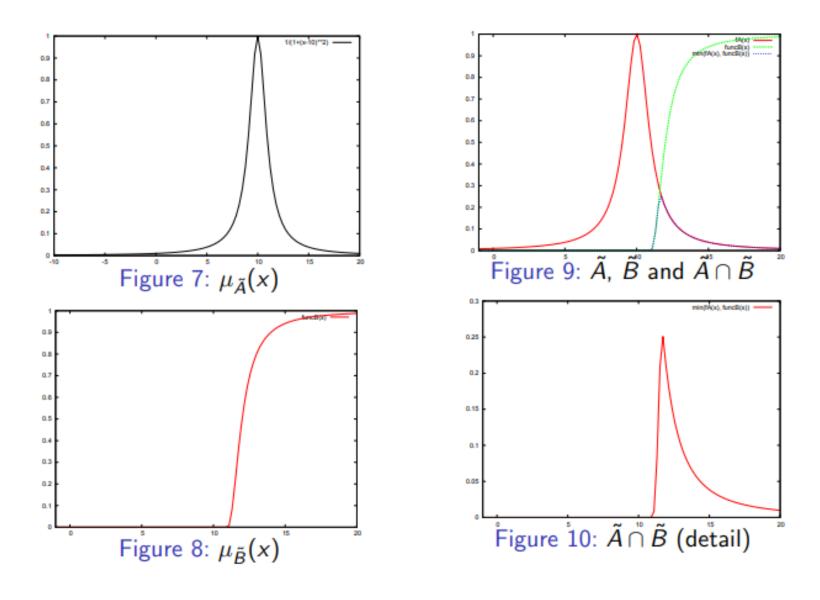
Operations with fuzzy sets: examples

- 2. Determine $\mathbb{C}_{\tilde{A}}X$, where $X=\{1,2,3,4,5,6,7,8,9,10\}$: ("non-comfortable house for a 4 persons family") $\mathbb{C}_{\tilde{A}}X=\{(1,1-0.1),(2,1-0.5),(3,1-0.8),(4,1-1),(5,1-0.7),(6,1-0.2),(7,1-0),(8,1-0),(9,1-0),(10,1-0)\}=\{(1,0.9),(2,0.5),(3,0.2),(4,0),(5,0.3),(6,0.8),(7,1),(8,1),(9,1),(10,1)\}$
- 3. Determine the union and intersection of the fuzzy sets $\tilde{A}=$ "real numbers close to 10" and $\tilde{B}=$ "real number considerably larger than 11".
 - Analytically: $\tilde{C} = \tilde{A} \cup \tilde{B}$ si $\tilde{D} = \tilde{A} \cap \tilde{B}$, where $\mu_{\tilde{C}}(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \mu_{\tilde{D}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}$
 - Graphically: (more suited in this case), in the next slides:

Example of operations with fuzzy sets: union



Example of operations with fuzzy sets: intersection



Properties of the operations with crisp sets and fuzzy sets

For crisp sets in the universe of discourse X the following properties are true (after [NR74]):

1. Commutativity:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

2. Associativity:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

3. Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

4. Idempotency:

$$A \cup A = A$$

$$A \cap A = A$$

Properties of the operations with crisp sets and fuzzy sets

5. Identity:

$$A \cup \emptyset = \emptyset \cup A = A$$

$$A \cup X = X \cup A = X$$

$$A \cap \emptyset = \emptyset \cap A = \emptyset$$

$$A \cap X = X \cap A = A$$

- 6. Transitivity: if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- 7. Involution: $\overline{\overline{A}} = A$, where $\overline{A} = \mathbb{C}_A X$
- 8. De Morgan:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Properties of the operations with crisp sets and fuzzy sets

9. Absorption:

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

10. Excluded middle laws (excluded middle laws):

$$A \cup \overline{A} = X$$

$$A \cap \overline{A} = \emptyset$$

- Proprieties 1–9 hold for fuzzy sets, too, but NOT the property 10.
- Some researchers consider this fact (non-fulfillment of the excluded middle laws) as being the main characteristic of fuzzy sets.

Fuzzy Relations

Definition

Given the universes of discourse X and Y, a fuzzy relation \tilde{R} in $X \times Y$ is defined as the set $\tilde{R} = \{((x,y),\mu_{\tilde{R}}(x,y)) \mid (x,y) \in X \times Y\}$, where $\mu_{\tilde{R}}(x,y) : X \times Y \to [0,1]$

Examples of fuzzy relations

1. For $X = Y = \mathbb{R}$, we define the continuous fuzzy relation "x considerably larger than y":

$$\mu_{\tilde{R}}(x,y) = \begin{cases} 0, & \text{if } x \le y \\ \frac{|x-y|}{10 \cdot |y|}, & \text{if } y < x \le 11 \cdot y \\ 1, & \text{if } x > 11 \cdot y \end{cases}$$

2. The fuzzy relation " $x \gg y$ " could be defined also as:

$$\mu_{\tilde{R}}(x,y) = \begin{cases} 0, & \text{if } x \le y \\ \frac{(x-y)^2}{1+(x-y)^2}, & \text{if } x > y \end{cases}$$

Examples of fuzzy relations

3. For the discrete fuzzy sets $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$, the fuzzy relation \tilde{R} " $x \gg y$ " can be expressed by the matrix:

	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
<i>x</i> ₁	0.5	1	0
<i>x</i> ₂	0.7	0.2	0.1

Table 1: Fuzzy relation \tilde{R}