CONFUSION MATRIX

Dr. P. K. Chaurasia

Associate Professor,
Department of Computer Science and
Information Technology
MGCUB, Motihari, Bihar

Outline

- * Introduction
- * Confusion Matrix
- * Matrix Terms
- * Measure Terms
- * Review Questions
- * References

INTRODUCTION

- It is a table that is often used to describe the performance of a classification model on a set of test data for which the true values are known.
- It is a table of two dimensions; Actual Value and Predicted Value.
- Confusion matrix, also known as an error matrix.

Cont...

- * It has four dimensions
 - * True Positive (TP)
 - * True Negative (TN)
 - * False Positive (FP)
 - * False Negative (FN)

PREDICTED

A	
C	
Τ	
U	
Α	
L	

185	NO	YES	
NO	55 [TN]	15 [FP]	70
Yes	10 [FN]	105 [TP]	115
	65	120	

Matrix Terms

- True Positives (TP) It is the case when both actual class & predicted class of data point is 1.
- True Negatives (TN) It is the case when both actual class & predicted class of data point is 0.
- False Positives (FP) It is the case when actual class of data point is 0 & predicted class of data point is 1.
- False Negatives (FN) It is the case when actual class of data point is 1 & predicted class of data point is 0.

Measure Terms

Accuracy:

It is how close a measured value to the actual (True)
 value.

Accuracy =
$$(TP + TN) / Total$$

= $(55+105) / 185$
= 0.86

Cont...

• Precision:

- It is how close the measured values are to each other.

```
Precision = TP / Predicted Yes
= 105 / 120
= 0.87
```

Recall

Recall:

It is the ratio of all correctly predicted positive predictions

```
Recall = TP / Actual Yes
= 105 / 115
= 0.91
```

Cont...

Error Rate:

- It is calculated as the number of all incorrect predictions divided by the total number of the datasets.
- The best error rate is 0.0
- The worst error rate is 1.0.

Error Rate = 1 - Accuracy =
$$(FN + FP) / Total$$

= 1 - 0.86 = $(15 + 10) / 185$
= 0.14

Review Questions

- * What is the use of confusion Matrix?
- * How we measure the performance?
- * What is Recall? Explain.
- * What is Error Rate? Explain.
- * What is Precision? Explain
- * How we measure the accuracy? Explain with example.

References

- List of Books
 - Understanding Machine Learning: From Theory to Algorithms.
 - Introductory Machine Learning notes
 - Foundations of Machine Learning
- * List of website for references
 - * https://www.ic.unicamp.br/~wainer/cursos/1s2012/mc906/Confusion.pdf
 - * https://www.geeksforgeeks.org/confusion-matrix-machine-learning/

