Gradient Descent Algorithm in Machine Learning

Dr. P. K. Chaurasia

Associate Professor,
Department of Computer Science and
Information Technology
MGCUB, Motihari, Bihar

Objectives

- * Introduction
- * Optimization
- * Gradient Descent
- * Types of Gradient Descent
- * Batch Gradient Descent
- * Stochastic Gradient Descent
- * Review Questions
- * References

Introduction

- The objective of optimization is to deal with real life problems.
- * It means getting the optimal output for your problem.
- * In machine learning, optimization is slightly different.
- * Generally, while optimizing, we know exactly how our data looks like and what areas we want to improve.
- * But in machine learning we have no clue how our "new data" looks like, let alone try to optimize on it.
- * Therefore, in machine learning, we perform optimization on the training data and check its performance on a new validation data.

Optimization Techniques

- * There are various kinds of optimization techniques, which is as follows:
 - * Mechanics: Deciding the surface of aerospace design.
 - * **Economics**: Cost Optimization
 - * **Physics**: Time optimization in quantum computing.
- Various popular machine algorithm depends upon optimization techniques like linear regression, neural network, K-nearest neighbor etc.
- Gradient descent is the most common used optimization techniques in machine learning.

Gradient Descent

- * Gradient descent is an optimization algorithm used to find the values of parameters (coefficients) of a function (f) that minimizes a cost function (cost).
- * Gradient descent is best used when the parameters cannot be calculated analytically (e.g. using linear algebra) and must be searched for by an optimization algorithm.

Gradient Descent

Suppose a large bowl like what you would eat cereal out of or store fruit in. This bowl is a plot of the cost function (f).

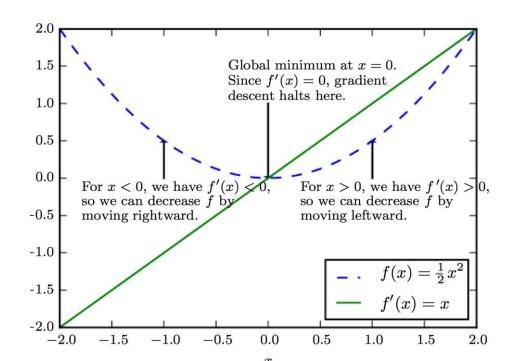
- * A random position on the surface of the bowl is the cost of the current values of the coefficients (cost).
- * The bottom of the bowl is the cost of the best set of coefficients, the minimum of the function.

Cont...

- * The goal is to continue to try different values for the coefficients, evaluate their cost and select new coefficients that have a slightly better (lower) cost.
- * Repeating this process enough times will lead to the bottom of the bowl and you will know the values of the coefficients that result in the minimum cost.

Gradient Descent

- Given function is $f(x)=\frac{1}{2}x^2$ which has a bowl shape with global minimum at x=0
 - Since f'(x)=x
 - For x>0, f(x) increases with x and f'(x)>0
 - For x < 0, f(x) decreases with x and f'(x) < 0
- Use f'(x) to follow function downhill
 - Reduce f(x) by going in direction opposite sign of derivative f'(x)



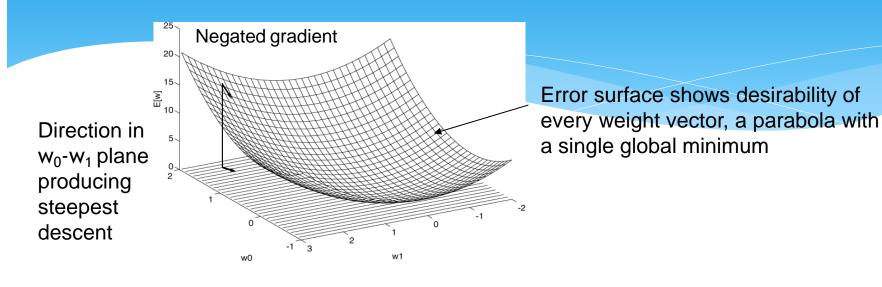
Minimizing with Multiple Inputs

• We often minimize functions with multiple inputs:

$$f: R^n \longrightarrow R$$

• For minimization to make sense there must still be only one (scalar) output

Application in ML: Minimize Error



- It determines a weight vector w that minimizes E(w) by
 - Starting with an arbitrary initial weight vector.
 - Repeatedly modifying it in small steps.
 - At each step, weight vector is modified in the direction that produces the steepest descent along the error surface.

Method of Gradient Descent

- The gradient points directly uphill, and the negative gradient points directly downhill.
- Thus we can decrease function f by moving in the direction of the negative gradient.
 - This is known as the method of steepest descent or gradient descent
- Steepest descent proposes a new point

$$x' = x - \eta \nabla_{x} f(x)$$

— where ε is the learning rate, a positive scalar. Set to a small constant.

Simple Gradient Descent

Procedure Gradient-Descent (

```
θ^{I}
 //Initial starting point

f //Function to be minimized

δ //Convergence threshold
)

1 t \leftarrow 1

2do

3θ^{t+1} \leftarrow θ^{t} - η∇f(θ^{t})

4 t \leftarrow t + 1

5 while ||θ^{t} - θ^{t-1}|| > δ

6 return(θ^{t})
```

Intuition

Taylor's expansion of function $f(\theta)$ in the neighborhood of θ^t is $f(\theta) \approx f(\theta^t) + (\theta - \theta^t)^T \nabla f(\theta^t)$ Let $\theta = \theta^{t+1} = \theta^t + h$, thus $f(\theta^{t+1}) \approx f(\theta^t) + h \nabla f(\theta^t)$ Derivative of $f(\theta^{t+1})$ wrt h is $\nabla f(\theta^t)$

At $h = \nabla f(\theta)$ a maximum occurs (since h^2 is positive) and at $h = -\nabla f(\theta)$ a minimum occurs. Alternatively,

The slope $\nabla f(\theta^t)$ points to the direction of

steepest ascent. If we take a step η in the opposite direction we decrease the value of f

function

One-dimensional example

Let $f(\theta) = \theta^2$

This function has minimum at $\theta=0$ which we want to determine using gradient descent We have $f'(\theta)=2\theta$

For gradient descent, we update by $-f'(\theta)$

If $\theta^t > 0$ then $\theta^{t+1} < \theta^t$

If $\theta^t < 0$ then $f'(\theta^t) = 2\theta^t$ is negative, thus $\theta^{t+1} > \theta^t$

Ex: Gradient Descent on Least Squares

• Criterion to minimize

$$f(x) = \frac{1}{2} A x - b^{2}$$

Least squares regression

$$E_{D}(\mathbf{w}) \square \frac{1}{2} \bigcap_{n \square}^{N} \square_{t} \square_{t} \mathbb{w}^{T} \square_{t} \mathbb{w}^{T}$$

• The gradient is

$$\nabla_x f(x) = A_T \quad (Ax - b) = A_T Ax - A_T b$$

- Gradient Descent algorithm is
 - 1. Set step size ε , tolerance δ to small, positive nos.

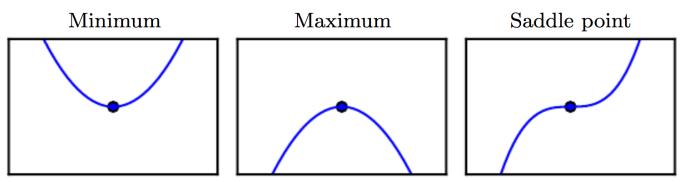
2. while
$$A^TAx - A^Tb //> \delta_2$$
 do

$$x \leftarrow x - \eta \left(A^T A x - A^T b \right)$$

3.end while

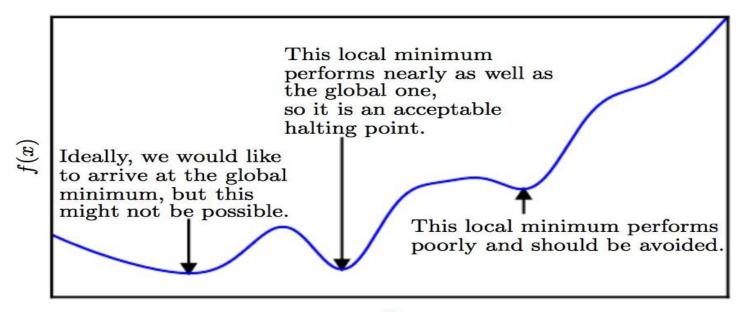
Stationary points, LocalOptima

- When f'(x)=0 derivative provides no information about direction of move
- Points where f'(x)=0 are known as *stationary* or critical points
 - Local minimum/maximum: a point where f(x) lower/higher than all its neighbors
 - Saddle Points: neither maxima nor minima



Presence of Multiple Minima

- Optimization algorithms may fail to find global minimum
- Generally accept such solutions



Types of Gradient Descent Algorithms

- * It can be classified by two methods:
 - Batch Gradient Descent Algorithm
 - * Stochastic Gradient Descent Algorithm
- * Batch gradient descent algorithms, use whole data at once to compute the gradient, whereas in stochastic you take a sample while computing the gradient.

Batch Gradient Descent

- * The objectives of all supervised machine learning algorithms is to best estimate a target function (f) that maps input data (X) onto output variables (Y).
- * Some machine learning algorithms have coefficients that characterize the algorithms estimate for the target function (f).

Batch Gradient Descent

- * Different algorithms have different representations and different coefficients, but many of them require a process of optimization to find the set of coefficients that result in the best estimate of the target function.
- * Examples of algorithms with coefficients that can be optimized using gradient descent are:
 - * Linear Regression
 - * Logistic Regression.

Stochastic Gradient Descent

- * Gradient descent can be slow to run on very large datasets.
- * One iteration of the gradient descent algorithm requires a prediction for each instance in the training dataset, it can take a long time when you have many millions of instances.
- * When large amounts of data, you can use a variation of gradient descent called stochastic gradient descent.
- * A few samples are selected randomly instead of the whole data set for each iteration. In **Gradient Descent**, there is a term called "batch" which denotes the total number of samples from a dataset that is used for calculating the **gradient** for each iteration.

Stochastic Gradient Descent

- * Stochastic gradient descent selects an observation uniformly at random, say i and uses fi(w) as an estimator for F(w). While this is a noisy estimator, we are able to update the weights much more frequency and therefore hope to converge more rapidly.
- * Updates takes only O(d) computation, though the total number of iterations, T, is larger than in the Gradient Descent algorithm.

Algorithm: Stochastic Gradient Descent

* Initialize w1

for k = 1 to K do

Sample an observation i uniformly at random

Update $w_K + 1 \leftarrow w_K - \alpha \nabla fi(w_K)$

end for

Return w_K.

Review Questions

- * What is Optimization in Machine Learning?
- * What is Gradient Descendent? Explain
- * What are the different types of GDA? Explain.
- * What is Batch Gradient Descent?
- * What is stochastic gradient descent?
- * Write an algorithm for SGD.

References

- List of Books
 - Understanding Machine Learning: From Theory to Algorithms.
 - Introductory Machine Learning notes
 - Foundations of Machine Learning
- * List of website for references
 - * Bottou, Léon (1998). "Online Algorithms and Stochastic Approximations". Online Learning and Neural Networks. Cambridge University Press. ISBN 978-0-521-65263-6
 - * Bottou, Léon. "Large-scale machine learning with stochastic gradient descent." Proceedings of COMPSTAT'2010. Physica-Verlag HD, 2010. 177-186.
 - * Bottou, Léon. "Stochastic gradient descent tricks." Neural Networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012. 421-436.

