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Here we will discus few important concepts of quantum 
many-body theory because atoms and molecules are 
many-body systems. 
We will mainly ignore the interactions between electrons 
and only consider their Coulomb repulsion by empirical 
rules.
Suppose two identical particle system (e.g., two 
electrons in a Helium atom) and their wavefunction

 
is 

ψ(x1

 

; x2

 

) ; where xi

 

is the coordinate of the ith
 

particle, 
e.g., x = (r,σ

 
) with r the spatial position and σ

 
= ↑,↓

 
the 

spin of the particle.
Let ay the exchange operation     : exchanging the 
coordinates of the two particles,

Pauli
 

Exclusion Principle



If we choose ψ(x1

 

, x2

 

) as an eigenstate
 

of           with 
eigenvalue

 
p; then the eigenequation

 
is

Applying           second time we get back to the original 
state, i.e.,

Therefore, p can only has two values, p = ±1
The quantum particles with p = 1 are referred to as 
Boson particles, or simply Bosons

 
and the quantum 

particles with p = -1 are referred to as Fermion
 

particles, 
or simply Fermions.



A more general analysis shows that with integer spin 
are always Bosons, and particles with half-odd-integer 
spins are always Fermions. 

For example,
electrons and protons are Fermions, and photons (light 
quanta) are Bosons; Helium-4 is Boson because its spin 
is zero, but Helium-3 atom is Fermion

 
with spin 1/2.

For a general quantum many-body wavefunction, the 
exchange operation is

where + corresponds to Boson system, and � to Fermion
 system. This is a exact property of a quantum many-body 

system.



A general Hamiltonian of N-particle system is

Where      is the interaction potential and usually given by

For example,

for helium
 

atom and

for lithium



Now consider the simplest approximation by ignoring    
, (the corresponding wavefunction

 
is the zero-order 

approximation to the true eigenstate), the
Hamiltonian becomes separate

and the wavefunction
 

becomes a product of single particle 
states. In general, we refer to such approximation as the 
independent-particle approximation. The essence of this

 
 

approximation is to keep the quantum nature of particles but 
ignoring their dynamic interactions (later, we will see some 
corrections due to Coulomb repulsion by empirical Hund's

 rule). 



Assume that we have solved the single-particle
Schrodinger

 
equation

The total wavefunction
 

may be written as (not taking the 
exchange symmetry into account)



In order to include this important quantum symmetry, 
consider first a 2-particle system, N = 2

For Bosons,

and for Fermions,



so that ψB

 

(x1 , x2

 

) = ψB

 

(x2 ,x1

 

) for Bosons
 

and 
ψF (x1 , x2

 

) = -
 

ψF (x2 ,x1

 

) for Fermions. 

One can also construct a symmetric wavefunction
 

for 
two Bosons by a single wavefunction

 
as

Extending to N-particle system, for the Fermions, we 
can write the wavefunction

 
as a determinant, called 

Slater determinant,



Notice that if k1

 

= k2

 

, ψF (x2 ,x1

 

) = 0, but not ψB

 

(x1 , x2

 

). This 
indicates that two Fermions cannot occupy the same state, 
but it two bosons are allowed to occupy the same state. It 
can be extended to a more general statements:

1) A state can only be occupied by at most a single Fermion

2) But it can be occupied by any number of Bosons



The first above statement is Pauli
 

exclusion principle.
The second statement is the property that leads to the so-

 called Bose-Einstein condensation of bosons at low
temperature.
As active ingredients in atoms and molecules are electrons 
which are fermions, we will mainly use Pauli

 
principle.

It is obvious that in the independent particle approximation 
(e.g., ignoring particle interactions), the ground state of an 
N-electron system is given by the Slater determinant 
constructed from the lowest N single particle states.
For atoms, these single particles states are naturally the 
eigenstates

 
of hydrogen like atoms as we discussed 

previously.
 

For molecules, these single particle states are 
constructed by a linear combinations of atomic states at 
different nuclear congurations.



Sometimes it is convenient to separate total wavefunction
 as discussed above into product of spatial and spin parts of 

wavefunctions, namely

Hence, if spin wavefunction
 
is antisymmetric, the spatial 

wavefucntion
 

ψ
 

must be symmetric in order for the total 
wavefunction

 
ψ

 
to be antisymmetric, vice versa.

Now we apply this simple analysis to atoms, the elements on 
the periodical table, where the identical fermions are 
electrons with spin -1/2. We will qualitatively discuss the 
ground states of the atoms.



By solving the Schrodinger
 

equation of hydrogenlike
 atoms in the previous section, we know the electron's 

states in an atom can be characterized by four quantum 
numbers (n, l, m, ms

 

):
n -

 
principle quantum number specified main energy 

levels (shells),
l -

 
(orbital) angular momentum quantum number,

m -
 

(orbital) magnetic quantum number and
ms

 

-
 

spin magnetic quantum number.

We extend this to many-electron's state ignoring the 
interactions, spin-orbit couplings, etc., by using the 
independent-particle approximation. Using notation

l = 0 → s state; 1 → p state; 2 → d state ---



Noticing m and ms

 

are degenerate quantum numbers, 
we conclude that s

 
shell can take up to two electrons 

(single orbital with m = 0 but one electron with spin up 
ms

 

= 1/2, the other electron with spin down ms = -1/2); 
p

 
shell can take up to 6 electrons (three states specied

 by m = 1, 0,-1, each can take one electron with spin up 
and one electron with spin down); d

 
shell can take up 

to 10 electrons (5 states
with m = 2, 1, 0, -1, -2, each can take two electrons), 
etc. These energy levels are ordered as,

In the above table, we also list total possible maximal number of electrons



In this independent-particle picture, the way each electron of 
an atom occupies a particular hydrogen state is called 
electron configuration. As we are mainly interested in the 
ground state, the electron conguration

 
of an atom is given by 

filling these hydrogen orbitals
 

from the lowest, in the ordered 
series as

We notice that a given electron configuration will not uniquely 
determine some basic properties (such as total angular 
momentum, spins etc.) of the corresponding atom. 
More information can be specied

 
by using the so called 

atomic spectral term (or atomic term) to represent states of 
an atoms. 
Some correction to independent-particle approximation for 
the ground-state atomic term due to Coulomb repulsion will 
be considered by the empirical rules.



Atomic spectral terms:
We use notation (2S+1)LJ

 

to denote a particular atomic 
state where S is its total spin, L is its total orbital 
angular momentum and J the total angular momentum 
(spins and orbitals). We use capital Latin letters for 
each value of orbital quantum number as

For example, 2P3/2 denotes levels with L = 1; S = 1/2 
and J = 3/2. The difference in energy between atomic 
levels having different L and S but the same electron
configuration is due to repulsive Coulomb interaction 
between electrons. These energy differences are small



We have the following empirical Hund's
 

rules (F. Hund, 
1925) concerning relative position of levels with the 
same configuration but different L and S:

(i) For a given shell (configuration), the term with greatest 
possible value of S gives the lowest energy;
(ii) The greatest possible value of L (for this S) has the lowest 
energy;
(iii) For half or less than half filling shell, J = │L-S│

 
gives lowest 

energy; For more than half-filling shell, J = L + S gives lowest 
energy.

The origin of the first rule is obvious: the largest total spin 
corresponds to symmetric (parallel) spin wavefunction

 and antisymmetric
 

orbital wavefunction, the later reduces
electron-electron repulsive interaction energy.



Example 1.
 

Helium (Z = 2) has a simple conguration
 (1s)2. Hence S = 0 and L = 0. The ground state term is 

1S0

 

with J = 0.

Example 2.
 

Carbon (Z = 6) has electron configuration 
as (1s)2(2s)2(2p)2. There are three p orbitals

 
with m = 

1, 0,-1 as l = 1. Two electrons with both spin equal to 
1/2 (corresponding to total largest spin S

 
= 1) are in 

orbital m = 1, 0 with total maximal M = 1+0 =1, 
corresponding to L = 1. Hence the ground state term is
3P0

 

. It is less than half-filling, J = │L -
 

S│
 

= 0.
The other two possible terms are 1S and 1D. They 
correspond to higher energies. Do you know how to 
obtain these
terms? Hint: Use symmetry argument.
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