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Outlines…



2. Data Labeling

▪ THE NEXT TASK AFTER DATA ACQUISITION IS TO

LABEL THE DATA.

▪ THERE ARE MANY CATEGORIES OF DATA

LABELING:

1. Use Existing labeling

2. Crowd-based

3. Weak-labeling



2. Data Labeling
1. Use Existing labeling:

▪ It exploits the existing label to label the
unlabeled data e.g. semi-supervised
learning

2. Crowd-based:

▪ Crowdsourcing approach get utilized to
label the individual samples. e.g Active
learning

3. Weak-labeling:

▪ It is expensive approach for labeling.
Data are labeled with less than perfect
labels (weak label)



2.1 Utilization of Existing Labels

▪ SUPERVISED AND SEMI-SUPERVISED MACHINE
LEARNING ALGORITHM CAN DIRECTLY APPLIED FOR
LABELING THE DATA.

▪ IN SUPERVISED LEARNING:

▪ Classification: to predict the categorical labels
using existing labels.

▪ Regression: To predict the continuous labels using
existing labels.

▪ IN SEMI-SUPERVISED:

▪ Inductive learning

▪ Transductive learning



Classification of Data Labeling 

Techniques 

▪ Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a big

data-ai integration perspective." IEEE Transactions on Knowledge and Data Engineering (2019).



Classification of Semi-Supervised 

Learning Techniques

▪ Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a big

data-ai integration perspective." IEEE Transactions on Knowledge and Data Engineering (2019).



2.2 Crowd-based Techniques

▪ THERE ARE TWO CATEGORIES IN CROWD-BASED
TECHNIQUES:

▪ ACTIVE LEARNING: IT SELECTS THE MOST
INTERESTING SAMPLES TO CROWD FOR
LABELING. I HAS HUMAN IN LOOP FOR THE
LABELING.

▪ CROWDSOURCING: IT UTILIZES THE HUMAN
RESOURCE FOR LABELING THE DATA WHICH
MAY NOT BE THE EXPERT OF THE DOMAIN.

▪ Challenges: Quality Control, scalability, User
interaction



2.3 Weak Supervision

• Automatically generated labels which may

not be good quality of labels as

crowdsourcing.

• This type of labeling is feasible for large

amount of data.

• In the case of crowdsourcing, its become

infeasible to label the data.

• There are two categories:

1. Data Programing

2. Fact extraction



2.3 Weak Supervision

• Data Programming:

• It utilizes the multiple labeling function rather than

one labeling function.

• Flowchart of Data Programming:

Reference: Roh, Yuji, Geon Heo, and Steven Euijong Whang. "A survey on data collection for machine learning: a

big data-ai integration perspective." IEEE Transactions on Knowledge and Data Engineering (2019).



2.3 Weak Supervision

• Fact Extraction:
• Fact-extraction is utilized for labeling.

• It is better than manual labeling.

Task Techniques

Improve Data Data Clearing

Relabeling

Improve model Robust Against Noise

Transfer Learning
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