Solution of Volterra Integral Equation of Second kind by Successive Substitutions

Dr. Rajesh Prasad

Assistant Professor
Department of Mathematics
Mahatma Gandhi Central University
Motihari-845401, Bihar, India
E-mail: rajesh.mukho@gmail.com
rajeshprasad@mgcub.ac.in

April 28, 2020

Let $y(x)=f(x)+\lambda \int_{a}^{x} K(x, t) y(t) d t$ be given Volterra integral equation of the second kînữ. Suppose that
(i) Kernel $K(x, t) \neq 0$, is real and continuous in the rectangle R for which $a \leq x \leq b, a \leq t \leq b$. Also, let $|K(x, t)| \leq M$, in R
(2)
(ii) The function $f(x) \neq 0$, is real and continuous in the interval I, for which $a \leq x \leq b$. Also, let $|f(x)| \leq N$, in I
(iii) The λ is a constant
(3)
(4)

Therefore, the equation (1) has a unique solution in Isand above equation (1) is given by the absolutely and uniformly convergent series

$$
\left.y(x)=f(x)+\lambda \int_{a}^{x} K(x, t) f(t) d t+\lambda^{2} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t, t\right)
$$

Rewriting equation(1), we have

$$
\begin{equation*}
y(x)=f(x)+\lambda \int_{\sim}^{x} K\left(x, t_{1}\right) y\left(t_{1}\right) d t_{1} \tag{6}
\end{equation*}
$$

Replacing x by t in equation (6), we have

$$
\begin{equation*}
y(t)=f(t)+\lambda \int_{a}^{a} K\left(t, t_{1}\right) y\left(t_{1}\right) d t_{1} \tag{7}
\end{equation*}
$$

Putting the above value of $y(t)$ in equation (1), we obtering

$$
\begin{equation*}
y(x)=f(x)+\lambda \int_{a}^{x} K(x, t)\left[f(t)+\lambda \int_{a}^{x} K\left(t, t_{1}\right) y\left(t_{1}\right) d t_{1}\right] d t \tag{8}
\end{equation*}
$$

Re-writing equation (7), we have

$$
\begin{equation*}
y(t)=f(t)+\lambda \int_{a}^{x} K\left(t, t_{2}\right) y\left(t_{2}\right) d t_{2} \tag{9}
\end{equation*}
$$

$$
y\left(t_{1}\right)=f\left(t_{1}\right)+\lambda \int_{a}^{x} K\left(t_{1}, t_{2}\right) y\left(t_{2}\right) d t_{2}
$$

Replacing t by t_{1} in equation (9), we have

Substituting the above value of $y\left(t_{1}\right)$ in equation (8), we wet

$$
\begin{aligned}
& y(x)=f(x)+\lambda \int_{a}^{x} K(x, t) f(t) d t+\lambda^{2} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1} d t \\
& +\lambda^{3} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) \int_{a}^{t_{1}} K\left(t_{1}, t_{2}\right) y\left(t_{2}\right) d t_{2} d t_{1} d t \ldots
\end{aligned}
$$

Proceeding the same as above, we have

$$
\begin{align*}
& y(x)=f(x)+\lambda \int_{a}^{x} K(x, t) f(t) d t+\lambda^{2} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1} d t \\
& +\lambda^{n} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) \ldots \int_{a}^{t_{n-2}} K\left(t_{n-2}, t_{n-1}\right) f\left(t_{n-1}\right) d t_{n-1} \ldots d t_{1} d \bar{t} \\
& \quad+R_{n+1}(x),
\end{align*}
$$

where

$$
R_{n+1}(x)=\lambda^{n+1} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) \ldots \int_{a}^{t_{n-1}} K\left(t_{n-1}, t_{n}\right) y\left(t_{n}\right) d t_{n} \ldots d t_{1} d t
$$

Now, let us consider the infinite series

$$
\begin{equation*}
f(x)+\lambda \int_{a}^{x} K(x, t) f(t) d t+\lambda^{2} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1} d t+\cdots \tag{14}
\end{equation*}
$$

In view of the assumptions (i) and (ii), each term oftthe series equation (14) is continuous in interval I. It follows that the series equation (14) is continuous in I, then its converges uniformly in I.

Let

$V_{n}(x)=\lambda^{n} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) \ldots \int_{a}^{t_{n-2}}$

From equation (15), we have

$$
\begin{align*}
& \left|V_{n}(x)\right| \leq\left|\lambda^{n}\right| N M^{n} \frac{(x-a)^{n}}{n!} \quad \text { Using eq.(2) and (3) } \\
& \left|V_{n}(x)\right| \leq\left|\lambda^{n}\right| N M^{n} \frac{(b-a)^{n}}{n!}, \quad a \leq x \leq b \\
& \left|V_{n}(x)\right| \leq\left|\lambda^{n}\right| \frac{N[M(b-a)]^{n}}{n!}, \quad a \leq x \leq b
\end{align*}
$$

Clearly, the series for which the positive constant
$\left|\lambda^{n}\right| \frac{N[M(b-a)]^{n}}{n!}$ is the general expression for the nth termey
is convergent for all values of $\lambda, N, M,(b-a)$. $n!$

Therefore, from equation (16), it follows that the series
equation (14) converges absolutely and uniformly. Iffee. (1) has a continuous solution, it must be expressed by eq.(12). If $y(x)$ is continuous in $I,|y(x)|$ must have a maximum value Y. Therefore $|y(x)| \leq Y$

Now, from equation (13), we have

$$
\begin{aligned}
& \left|R_{n+1}(x)\right|=\left|\lambda^{n+1} \int_{a}^{x} K(x, t) \int_{a}^{t} K\left(t, t_{1}\right) \ldots \int_{a}^{t_{n-1}} K\left(t_{n-1}, t_{n}\right) y\left(t_{n}\right) d t_{n} \ldots d t_{1} d t\right| \\
& \left|R_{n+1}(x)\right| \leq \frac{|\lambda|^{n+1} Y M^{n+1}(x-a)^{n+1}}{(n+1)!}
\end{aligned}
$$

$$
\left|R_{n+1}(x)\right| \leq \frac{|\lambda|^{n+1} Y M^{n+1}(b-a)^{n+1}}{(n+1)!},(a \leq x \leq b)
$$

Hence $\lim _{n \rightarrow \infty} R_{n+1}(x)=0$.
It follows that the function $y(x)$ satisfying equation (1) the continuous function given by the series eq. (14).
Q. Determine the resolvent kernels for the Fredholm integral equation having kernels:

$$
\text { (i) } K(x, t)=e^{x+t}, a=0, b=1
$$

(ii) $K(x, t)=(1+x)(1-t), a=-1, b=1$

Sol: We know that iterated kernels $K_{m}(x, t)$

$$
\begin{gather*}
K_{1}(x, t)=K(x, t) \tag{1}\\
K_{m}(x, t)=\int_{0}^{1} K(x, z) K_{m-1}(z, t) d z \tag{2}
\end{gather*}
$$

From equation (1) $\quad K_{1}(x, t)=K(x, t)=e^{x+t}$
Putting $n=2$ in equation (2), we have

$$
\begin{align*}
& K_{2}(x, t)=\int_{0}^{1} K(x, z) K_{1}(z, t) d z \\
& K_{2}(x, t)=e^{x+t}\left(\frac{e^{2}-1}{2}\right) \tag{4}
\end{align*}
$$

Putting $n=3$ in equation (2), we have

$$
\begin{align*}
& K_{3}(x, t)=\int_{0}^{1} K(x, z) K_{2}(z, t) d z \\
& K_{3}(x, t)=e^{x+t}\left(\frac{e^{2}-1}{2}\right)^{2} \tag{5}
\end{align*}
$$

as beforeand so on. Now, observing the equation (3), (4) an du
(5), we may write

$$
\begin{equation*}
K_{m}(x, t)=e^{x+t}\left(\frac{e^{2}-1}{2}\right)^{m-1}, m=1,2,3 \ldots \ldots \tag{6}
\end{equation*}
$$

Now, the required resolvent kernel is given by

$$
\begin{aligned}
& R(x, t ; \lambda)=\sum_{m=1}^{\infty} \lambda^{m-1} K_{m}(x, t)=\sum_{m=1}^{\infty} \lambda^{m-1} e^{x+t}\left(\frac{e^{2}-1}{2}\right)^{m-1} \\
& R(x, t ; \lambda)=e^{x+t} \sum_{m=1}^{\infty}\left[\lambda\left(\frac{e^{2}-1}{2}\right)\right]^{m-1} \\
& \text { But } \sum_{m=1}^{\infty}\left[\lambda\left(\frac{e^{2}-1}{2}\right)\right]^{m-1}=1+\lambda\left(\frac{e^{2}-1}{2}\right)+\left\{\lambda\left(\frac{e^{2}-1}{2}\right)\right\}^{2}+\cdots
\end{aligned}
$$

Which is an infinite geometric series with common ratio $\lambda\left(\frac{e^{2}-1}{2}\right)$
Therefore,

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left[\lambda\left(\frac{e^{2}-1}{2}\right)\right]^{m-1}=\frac{2}{\left(2-\lambda\left(e^{2}-1\right)\right)} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\text { Provided } \quad\left|\lambda\left(\frac{e^{2}-1}{2}\right)\right|<1 \tag{9}
\end{equation*}
$$

Now, using equation (8) and (9), equation (7) reduces to

$$
R(x, t ; \lambda)=\frac{2 e^{x+t}}{\left(2-\lambda\left(e^{2}-1\right)\right)} \text { Provided } \quad|\lambda|<\frac{2}{e^{2}-1}
$$

Question: Solve the following integral equation by the
method of successive approximations
(1) $y(x)=\frac{5 x}{6}+\frac{1}{2} \int_{0}^{1} x t y(t) d t$

(2) $\quad y(x)=x+\lambda \int_{0}^{1} x t y(t) d t$
(3) $y(x)=\sin x-\frac{x}{4}+\frac{1}{4} \int_{0}^{1} x t y(t) d t$
(4) $y(x)=\frac{3}{2} e^{x}-\frac{1}{2} x e^{x}-\frac{1}{2}+\frac{1}{2} \int_{0}^{1} t y(t) d t$

Try to yourself above given problem

References:

- M.R. Spiegel, Fourier Analysis with Applications to Boundary Value Problems,Schaum's Series, Rata McGraw-Hill.
- Francis B. Hildebrand, Methods of Applied Mathematics, Dover Publications.
- M.D. Raisinghania, Integral Equations, S. Chand and Company.
- R.P. Kanwall, Linear Integral Equations. Theory and Techniques. Academic press, New York.
- A.S. Gupta, Calculus of Variation with Applications, Prentice Hall of India.
- Naveen Kumar, An Elementary Course of Variational Problems in \geqslant Calculus, Narosa Publishing House, New Delhi.

Thank you

* *

