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Random Variable: A random variable is a function that associates a
real number with each element in the sample space.

In other words, a random variable is a function X: 𝑆 → 𝑅, where S is
the sample space of the random experiment under consideration.

Note: Normally a capital letter, say X, is used to denote a random
variable and its corresponding small letter, x in this case, for one of its
values.

Example: Consider the random experiment of tossing a coin three
times and observing the result (a Head or a Tail) for each toss. Let X
denote the total number of heads obtained in the three tosses of the
coin.



(i) Construct a table that shows the values of the random variable X for 
each possible outcome of the random experiment.

(ii) Identify the event  {X ≤ 1}in words.

Let Y denote the difference between the number of heads obtained and 
the number of tails obtained.

(iii) Construct a table showing the value of Y for each possible outcome.

(iv) Identify the event{Y =0} in words.

Discrete Random Variable: If a sample space contains a finite number 
of possibilities or an unending sequence with as many elements as there 
are whole numbers (countable), it is called a discrete sample space. A 
random variable is called a discrete random variable if its set of possible 
outcomes is countable.



Example: (i) Two balls are drawn in succession without replacement
from an urn containing 4 red balls and 3 black balls. The possible
outcomes and the values x of the random variable X, where X is the
number of red balls, are

Sample 

Space

x

RR 2

RB 1

BR 1

BB 0



Example (ii) Suppose that our experiment consists of tossing 3 fair
coins. If we let X denote the number of heads appearing, then X is a
random variable taking on one of the values 0, 1, 2, 3 with respective
probabilities

S = {(H, H, H ), (H, H, T), (H, T, H), ( T, H, H),

(T, T, H), (T, H, T), (H, T, T), (T, T, T)}

P{X = 0} = P{(T, T, T)} =  1/8              

P{X = 1} = P{( T, T, H), (T, H, T), (H, T, T)} = 3/8

P{X = 2} = P{( T, H, H), (H, T, H),(H, H, T) }= 3/8

P{X = 3} = P{(H, H, H )} =  1/8



Discrete Probability Distributions: A discrete random variable 

assumes each of its values with a certain probability.  

In the case of tossing a coin three times, the variable X,
representing the number of heads, assumes the value 2 with
probability 3/8, since 3 of the 8 equally likely sample points result
in two heads and one tail. The possible values x of X and their
probabilities are

X 0 1 2 3

P(X=x) 1/8 3/8 3/8 1/8



Probability Mass Function: Let X be a one dimensional discrete
random variable which takes the values x1 ,x2 ,x3,…. Then P(X = xi) =
P(xi) satisfies the following conditions

1. P(xi)  0

2. 
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Cumulative Distribution Function of Discrete Random Variable X:

The distribution function of a discrete random variable X defined in 

(−,) is given by

Properties of the Distribution function

1. P(a < X   b) = F(b) − F(a)

2. P(a  X   b) = P(X = a) + F(b) − F(a)

3. P(a < X  < b) = F(b) − F(a) − P(X = b)

4. P(a  X  < b) = F(b) − F(a) − P(X = b) + P(X = a)
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Example(i) A random variable X has the following probability function

1. Determine the value of ‘a’.

2. Find P(X < 3), P(X  3). P(0 < X < 5).

3. Find the distribution function of X.

Value of X, 

xi

0 1 2 3 4 5 6 7 8

Probability 

P(x)
a 3a 5a 7a 9a 11a 13a 15a 17a



1. Since

a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1

2. P(X < 3) = P(0) + P(1) + P(2) = a + 3a + 5a = 9a =1/9

P(X  3) = 1 − P(X < 3) = 8/9

P(0 < X < 5) = P(1) + P(2) + P(3) + P(4)

= 3a + 5a + 7a + 9a = 24a = 24/81

3.
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x 0 1 2 3 4 5 6 7 8

P(x) a 3a 5a 7a 9a 11a 13a 15a 17a

F(x) a 4a 9a 16a 25a 36a 49a 64a 81a



Alternate method for sub-division 2, using the cumulative 
distribution function F(x).

P(X < 3) = P(X ≤ 2) = F(2) = 9a = 1/9

P(X ≥ 3) = 1 – P(X < 3) = 1 – (1/9) = 8/9

P(0 < X < 5) = F(5) − F(0) − P(X = 5)

= 36a − a − 11a

= 24a

= 24/81



Example (ii) A random variable X has the following probability 

function

1. Determine the value of ‘a’.

2. Find P(1.5 < X < 4.5 / X > 2).

3. Find the smallest value of  for which 

P(X  ) > 1/2. 

Value of X, 

xi

0 1 2 3 4 5 6 7

Probability 

P(x)
0 a 2a 2a 3a a2 2a2 7a2 +a



1. Since

10 a2 + 9a = 1

a = 1/10 or  −1. As a= −1 is meaningless, a = 1/10

2.

3. P(X  0) = 0; P(X  1) = 0.1; P(X  2) = 0.3; 

P(X  3) = 0.5 and P(X  4) = 0.8

  = 4  for which P(X  ) > 1/2 .
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Continuous Random Variable: If a random variable takes on all values within a
certain interval, then the random variable is called Continuous random variable.

E.g., The height, age and weight of individuals, the amount of rainfall on
a rainy day.

Probability Density Function: If X is a continuous random variable then f(x) is
called the probability density function of X provided f(x) satisfies the following
conditions;

1. f(x)  0, x

2.

Cumulative Probability Distribution of Continuous Random Variable X: The
cumulative distribution function F(x) of a continuous random variable X with
density function f(x) is
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Results:

(a) 1.  

2. When X is continuous r.v.

 P(a < X   b) = P(a  X   b) = P(a < X  < b) = P(a  X  < b).

(b) If F(x) is the distribution function of one dimensional random variables,

then

1. 0  F(x)  1

2. If x < y, then F(x)  F(y)

3. F(−) = 0,  F() = 1.

4. If X is discrete r.v. taking values x1 ,x2 ,x3,… where x1 < x2 <

x3 <… then P(X = xi) = F(xi) − F(xi − 1).

5.  If X is continuous r.v., then 
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Example If the density function of a continuous r.v. X is given by 

1.   Find the value of a
2. Find the cumulative distribution function of X
3. Find P(1.5 < X ≤ 3)
4.   Find P(X > 1.5)
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Solution: 1. Since  f(x) is a p.d.f.

a = ½.

2. 
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2. Cumulative Distribution function
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3.

4. 
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