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Moment Generating function: Let f(x,y) denote the joint probability density
function of the two random variables X and Y. If exists for –h1 < t1

< h1 ,-h2 < t2 < h2 ,where h1 and h2 are positive, it is denoted by M(t1 , t2)
and is called the moment-generating function of the joint distribution of X
and Y.

Hence, the Marginal Distribution of X and Y are

and
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Independence of Two Random Variables:

(1) Two random variables X and Y, forming a discrete random
variable, are independent if and only if:

where is their joint probability mass function and and are
their marginal probability mass functions.

(2) Two random variables X and Y, forming an absolutely continuous
random variable, are independent if and only if:

where is their joint probability mass function and and
are their marginal probability mass functions.

• Let the stochastically independent random variables X and Y have the
marginal probability density functions and , respectively.
Then
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Example: Let

be the joint probability density function of X and Y. Find the moment
generating function of this distribution.

Solution: Moment Generating Function of X and Y,
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Discrete Probability Distributions

1-Bernoulli Distribution: A random variable X is said to have a 
Bernoulli distribution with parameter p if its probability mass function 
is given by:

, for x = 0,1

=0 otherwise.

The parameter p satisfies 0≤p≤1. Often (1-p) is denoted as q.

𝑃(𝑋 = 𝑥) =
𝑝𝑥(1 − 𝑝)1−𝑥

𝑥!



2-Binomial Distribution: If X is discrete random variable which can
take values 0,1,2,3,…,n such that , x = 0,1,2,….,n
where then X is said to follow a Binomial distribution with
parameters n and p.

Moment Generating Function of Binomial Distribution:
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Derivatives of MGF, 

Mean and Variance of Binomial Distribution

Mean :np

Variance : npq
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Example: In a large consignment of electric bulbs 10 % are defective. A random
sample of 20 is taken for inspection. Find the probability that (i) All are good bulbs
(ii) at most 3 are defective bulbs (iii) Exactly there are three defective bulbs.

Solution: Let X be the event of defective bulbs,

p = 0.1   q = 0.9  n = 20

(i)P(X = 0) = 20C0 (0.1)0 (0.9)20 = 0.1216

(ii)P(X  3) = p(0) + p(1) + p(2) + p(3)

= 20C0 (0.1)0 (0.9)20 +20C1 (0.1)1 (0.9)19

+ 20C2 (0.1)3 (0.9)18 + 20C3 (0.1)3 (0.9)17

= 0.8666

(iii)P(X = 3) = 20C3 (0.1)3 (0.9)17 = 0.19.



3-Negative Binomial Distribution: Let p(x) be the probability that
exactly x + r trails will be required to produce r success. Clearly the last
trial must be a success and the probability is p. In the remaining x + r –
1 trials, there must be r – 1 successes and the probability of this is given
by

Moment Generating Function of Negative Binomial Distribution:
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Derivatives of MGF,
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Mean and Variance of Negative Binomial Distribution:

Mean,
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Variance ,
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Example: Find the probability that in tossing 4 coins one will get
either all heads or all tails for the third time on the seventh toss.

Solution: P(H H H H) = 1/16; P(T T T T) = 1/16

P(all head  all tail) = 1/16 + 1/16 = 1/8

 p = 1/8,  q =7/8 ;  x + r = 7, r = 3
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Example: In a company 5% defective components are produced. What is
the probability that atleast 5 components are to be examined in order to
get three defectives?

Solution:

Given,  p = 0.05,  q =0.95 ;  x + r ≤ 5, r = 3

P( X  2) = 1 – P(X < 2)

= 1 – P(X = 0) – P(X = 1)

= 1 – 2C2 (0.05)3 (0.95)0 – 3C2 (0.05)3 (0.95)1

= 0.9995.
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4-Trinomial Distribution: The binomial distribution can be generalized
to the trinomial distribution. The random variables X and Y is said to
have trinomial distribution is if they have the joint probability density
function f(x,y) given by,

where x and y are non-negative integers with

and are positive proper fraction with
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5-Multinomial Distribution: The trinomial distribution is generalized to
the multinomial distribution as follows:

If a given trial can result in the k outcomes E1,E2, . . . , Ek with
probabilities p1, p2, . . . , pk, then the probability distribution of the
random variables X1,X2, . . . , Xk, representing the number of
occurrences for E1,E2, . . . , Ek in n independent trials, is

with and

Moment Generating Function of Multinomial Distribution:
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6-Poisson Distribution: If X is a discrete random variable that can
assume the values 0,1,2,… such that its probability mass function is
given by

, x = 0,1,2,….;  > 0.

Then X is said to follow a Poisson distribution with parameter  .

Poisson distribution is a limiting case of binomial distribution under
the following assumptions.

• The number of trials ‘n’ should be indefinitely large. i.e., n → .

• The probability of successes ‘p’ for each trial is indefinitely small.

• np = , should be finite where  is a constant.
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Moment Generating Function of Poisson Distribution:

)1(

00

0

0

!
,

!

)(

!

)(

−

−



=



=

−



=

−



=

=

=

==

=

=







t

t

e

e

n

n
a

x

xt

x

x
tx

x

x

tx

e

ee

n

a
e

x

e
e

x

e
e

petM

















Mean and Variance of Poisson Distribution:

Mean ,

Variance,
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Example: A random variable X follows Poisson distribution and if 
P(X=1) = 2P(X=2), 

find (i) P(X = 0)    

(ii) S.D. of X.

Solution: Given that P(X=1) = 2P(X=2)

(i) 

(ii) S.D. of X 
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Continuous Probability Distribution:

1-Exponential distribution: A random variable X is said to have
exponential distribution with parameter 𝛼 > 0 if its probability density
function is given by

𝑓 𝑥 = 𝛼 𝑒−𝛼 𝑥 , 𝑥 ≥ 0

= 0, otherwise



Gamma Function: In Integral Calculus, the integral

is called the gamma function, with
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2- Gamma Distribution: A random variable X is said to have
gamma distribution with parameter   if its probability density
function is given by
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Moment Generating function of Gamma Distribution:
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3-Normal Distribution: Let X be a continuous random variable have a 
normal distribution with parameter a (mean) and 𝑏2 (variance) if its 
probability density function is given by the probability law: 
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Moment Generating Function of Normal Distribution: The moment
generating function is

and
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Theorem: If the random variable X is n(µ,2) then the random variable
W=(X - µ)/ is n(0,1)

Proof: Let G(w) and g(w) be the distribution and density function of W
and W=(X - µ)/.

Let,
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Hence

which is n(0,1)
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Bivariate Normal Distribution: Let X and Y be two random variables 
having the joint probability density function

where

then X and Y are said to have a bivariate normal distribution. 
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Theorem: Let X and Y have a bivariate normal
distribution. Prove that marginal probability density
function of X and Y are respectively

and and is the correlation
coefficient between X and Y.
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Proof: Marginal density function of X,

where
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thus

Normal p.d.f. with mean     and variance 
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Now,

Which is

Here b is the conditional mean of Y given X = x,

Similarly,

Coefficient of x in E[Y/x]  Coefficient of y in E[X/y]
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Moment Generating Function of Bivariate Normal Distribution:
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Since                           is the moment generating function 

of the conditional probability function f(y/x). Also f(y/x) 

is a normal p.d.f. with mean

and variance                   . 
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Also f1(x) is the normal p.d.f. with mean          variance  
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Which is the moment generating function of bivariate normal distribution. 
It is to note that, if         , then                                       .

Thus X and Y are independent when          .
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Transformation of Random Variables: If X and Y are random variables
with joint probability density function fxy(x,y) and if Z = g(X,Y) and
W = h(X,Y) are two other random variables, then the joint probability
density function of Z and W is given by

where

is called the Jacobian of the transformation
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