Random Variables and probability Distributions-III

Mr. Anup Singh

Department of Mathematics
Mahatma Gandhi Central university
Motihari-845401, Bihar, India
E-mail: anup.singh254@gmail.com

Moment Generating function: Let $\mathrm{f}(\mathrm{x}, \mathrm{y})$ denote the joint probability density function of the two random variables X and Y . If $E\left[e^{t_{1} X+t_{2} Y}\right]$ exists for $-\mathrm{h}_{1}<\mathrm{t}_{1}$ $<h_{1},-h_{2}<t_{2}<h_{2}$, where h_{1} and h_{2} are positive, it is denoted by $M\left(t_{1}, t_{2}\right)$ and is called the moment-generating function of the joint distribution of X and Y .
Hence, the Marginal Distribution of X and Y are

$$
\begin{aligned}
& M\left(t_{1}, 0\right)=E\left[e^{t_{1} X}\right] \\
& \text { and } M\left(t_{1}\right) \\
& M\left(0, t_{2}\right)=E\left[e^{t_{2},}\right]
\end{aligned}=M\left(t_{2}\right)
$$

Also,

$$
E\left(X^{K} Y^{m}\right)=\left[\frac{\partial^{k+m}}{\partial t_{1}^{k} \partial t_{2}^{m}} M\left(t_{1}, t_{2}\right)\right]_{t_{1}=0, t_{2}=0}
$$

Independence of Two Random Variables:

(1) Two random variables X and Y , forming a discrete random variable, are independent if and only if: $p_{i j}=p_{* j} \cdot p_{i^{*}}$
where $p_{i j}$ is their joint probability mass function and $p_{i^{*}}$ and $p_{z_{j}}$ are their marginal probability mass functions.
(2) Two random variables X and Y , forming an absolutely continuous random variable, are independent if and only if: $f(x, y)=f_{X}(x) f_{Y}(y)$ where $f(x, y)$ is their joint probability mass function and $f_{X}(x)$ and $f_{Y}(y)$ are their marginal probability mass functions.

- Let the stochastically independent random variables X and Y have the marginal probability density functions $f_{X}(x)$ and $f_{Y}(y)$, respectively. Then $E[X Y]=E[X] E[Y]$

Example: Let

$$
f(x, y)=\left\{\begin{array}{l}
e^{-y}, 0<x<y<\infty \\
0, \text { elsewhere }
\end{array}\right.
$$

be the joint probability density function of X and Y . Find the moment generating function of this distribution.
Solution: Moment Generating Function of X and Y,

$$
\begin{aligned}
\boldsymbol{M}\left(t_{1}, t_{2}\right) & =E\left[e^{t_{1} x+t_{2} y}\right] \\
& =\int_{0}^{\infty} \int_{0}^{y} e^{t_{1} x+t_{2} y} f(x, y) d x d y \\
& =\int_{0}^{\infty} \int_{0}^{y} e^{t_{1} x+t_{2} y} e^{-y} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{y} e^{t_{1} x+\left(t_{2}-1\right) y} d x d y \\
& =\int_{0}^{\infty} e^{\left(t_{2}-1\right) y}\left[\frac{e^{t_{1} x}}{t_{1}}\right]_{0}^{y} d y \\
& =\int_{0}^{\infty} e^{\left(t_{2}-1\right) y}\left[\frac{e^{t_{1} y}-1}{t_{1}}\right]_{0}^{y} d y
\end{aligned}
$$

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =\frac{1}{t_{1}} \int_{0}^{\infty}\left[e^{-\left(1-t_{1}-t_{2}\right) y}-e^{-\left(1-t_{2}\right) y}\right] d y \\
& =\frac{1}{t_{1}}\left[\frac{1}{1-t_{1}-t_{2}}-\frac{1}{1-t_{2}}\right] \\
& =\frac{1}{\left(1-t_{1}-t_{2}\right)\left(1-t_{2}\right)}
\end{aligned}
$$

Discrete Probability Distributions

1-Bernoulli Distribution: A random variable X is said to have a Bernoulli distribution with parameter p if its probability mass function is given by:

$$
\begin{array}{rlrl}
P(X=x)=\frac{p^{x}(1-p)^{1-x}}{x!} & & \text { for } x=0,1 \\
& =0 & & \text { otherwise } .
\end{array}
$$

The parameter p satisfies $0 \leq p \leq 1$. Often (1-p) is denoted as q.

2-Binomial Distribution: If X is discrete random variable which can take values $0,1,2,3, \ldots, n$ such that $P(X=x)=n C_{x} p^{x} q^{n-x}, x=0,1,2, \ldots, n$ where $p+q=1$ then X is said to follow a Binomial distribution with parameters n and p.
Moment Generating Function of Binomial Distribution:

$$
\begin{aligned}
M(t) & =E\left[e^{t X}\right] \\
& =\sum_{x=0}^{n} e^{t x} p_{x} \\
& =\sum_{x=0}^{n} e^{t x} n C_{x} p^{x} q^{n-x} \\
& =\sum_{x=0}^{n} n C_{x}\left(p e^{t}\right)^{x} q^{n-x}, \quad \because(a+b)^{n}=\sum_{r=0}^{n} n C_{r} a^{r} b^{n-r} \\
& =\left(p e^{t}+q\right)
\end{aligned}
$$

Derivatives of MGF,

$$
\begin{aligned}
& M^{\prime}(t)=n\left(p e^{t}+q\right)^{n-1} \times p e^{t} \\
& M^{\prime \prime}(t)=n p\left[\left(p e^{t}+q\right)^{n-1} \times e^{t}+(n-1)\left(p e^{t}+q\right)^{n-2} p e^{2 t}\right]
\end{aligned}
$$

Mean and Variance of Binomial Distribution

$$
\begin{aligned}
& E(X)=M^{\prime}(0)=n p \\
& E\left(X^{2}\right)=M^{\prime \prime}(0)=n p[1+(n-1) p] \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=n p q
\end{aligned}
$$

Mean :np
Variance : npq

Example: In a large consignment of electric bulbs 10% are defective. A random sample of 20 is taken for inspection. Find the probability that (i) All are good bulbs (ii) at most 3 are defective bulbs (iii) Exactly there are three defective bulbs.

Solution: Let X be the event of defective bulbs,

$$
\begin{aligned}
& p=0.1 \quad q=0.9 \quad n=20 \\
& \text { (i) } \mathrm{P}(\mathrm{X}=0)= \\
& \begin{aligned}
& 20 \mathrm{C}_{0}(0.1)^{0}(0.9)^{20}=0.1216 \\
\text { (ii) } \mathrm{P}(\mathrm{X} \leq 3)= & p(0)+p(1)+p(2)+p(3) \\
= & 20 \mathrm{C}_{0}(0.1)^{0}(0.9)^{20}+20 \mathrm{C}_{1}(0.1)^{1}(0.9)^{19} \\
& +20 \mathrm{C}_{2}(0.1)^{3}(0.9)^{18}+20 \mathrm{C}_{3}(0.1)^{3}(0.9)^{17} \\
= & 0.8666
\end{aligned}
\end{aligned}
$$

(iii) $\mathrm{P}(\mathrm{X}=3)=20 \mathrm{C}_{3}(0.1)^{3}(0.9)^{17}=0.19$.

3-Negative Binomial Distribution: Let $p(x)$ be the probability that exactly $x+r$ trails will be required to produce r success. Clearly the last trial must be a success and the probability is p. In the remaining $x+r-$ 1 trials, there must be $r-1$ successes and the probability of this is given by

$$
p(X=x)=\left\{\begin{array}{l}
(x+r-1) C_{r-1} p^{r} q^{x}, \quad x=0,1,2,3, \ldots \\
0, \\
\text { otherwise }
\end{array}\right.
$$

Moment Generating Function of Negative Binomial Distribution:

$$
\begin{aligned}
M(t) & =\sum_{x=0}^{\infty} e^{t x} p_{x} \\
& =\sum_{x=0}^{\infty} e^{t x}(x+r-1) C_{r-1} p^{r} q^{x} \\
& =p^{r} \sum_{x=0}^{\infty}(x+r-1) C_{r-1}\left(q e^{t}\right)^{x} \\
& =p^{r}\left[\begin{array}{l}
(r-1) C_{0}\left(q e^{t}\right)^{0}+(r) C_{1}\left(q e^{t}\right)^{1}+(r+1) C_{2}\left(q e^{t}\right)^{2} \\
+(r+2) C_{3}\left(q e^{t}\right)^{3}+\ldots
\end{array}\right] \\
& =p^{r}\left[1+\frac{r}{1!}\left(q e^{t}\right)+\frac{(r+1) r}{2!}\left(q e^{t}\right)^{2}+\frac{(r+2)(r+1) r}{3!}\left(q e^{t}\right)^{3}+\ldots .\right]
\end{aligned}
$$

$$
\because(1-a)^{-n}=1+\frac{n}{1!} a+\frac{n(n+1)}{2!} a^{2}+\frac{n(n+1)(n+2)}{3!} a^{3}+\ldots .
$$

$$
M(t)=p^{r}\left(1-q e^{t}\right)^{-r}, \text { for } t<-\log _{e} q
$$

Derivatives of MGF,

$$
\begin{aligned}
M^{\prime}(t) & =p^{r}(-r)\left(1-q e^{t}\right)^{-r-1}\left(-q e^{t}\right)=r p^{r} q e^{t}\left(1-q e^{t}\right)^{-r-1} \\
M^{\prime \prime}(t) & =r p^{r} q\left[e^{t}(-r-1)\left(1-q e^{t}\right)^{-r-2}\left(-q e^{t}\right)+e^{t}\left(1-q e^{t}\right)^{-r-1}\right] \\
& =r p^{r} q\left(1-q e^{t}\right)^{-r-1} e^{t}\left[(r+1)\left(1-q e^{t}\right)^{-1}\left(q e^{t}\right)+1\right]
\end{aligned}
$$

Mean and Variance of Negative Binomial Distribution:

Mean, $E[X]=M^{\prime}(0)=r p^{r} q e^{0}\left(1-q e^{0}\right)^{-r-1}$

$$
\begin{aligned}
& =r p^{r} q(1-q)^{-r-1} \\
& =r p^{r} q p^{-r-1} \\
& =\frac{r q}{p}
\end{aligned}
$$

$$
\begin{aligned}
E\left[X^{2}\right] & =M^{\prime \prime}(0)=r p^{r} q\left(1-q e^{0}\right)^{-r-1} e^{0}\left[(r+1)\left(1-q e^{0}\right)^{-1}\left(q e^{0}\right)+1\right] \\
& =r p^{r} q p^{-r-1}\left[(r+1) p^{-1} q+1\right] \\
& =r q p^{-1}\left[(r+1) p^{-1} q+1\right] \\
& =\frac{r(r+1) q^{2}}{p^{2}}+\frac{r q}{p}
\end{aligned}
$$

Variance,

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[X^{2}\right]-E[X]^{2} \\
& =\frac{r(r+1) q^{2}}{p^{2}}+\frac{r q}{p}-\frac{r^{2} q^{2}}{p^{2}} \\
& =\frac{r q^{2}}{p^{2}}+\frac{r q}{p} \\
& =r q\left(\frac{q+p}{p^{2}}\right) \\
& =\frac{r q}{p^{2}}
\end{aligned}
$$

Example: Find the probability that in tossing 4 coins one will get either all heads or all tails for the third time on the seventh toss.
Solution: $\mathrm{P}(\mathrm{H} H \mathrm{H} H)=1 / 16 ; ~ \mathrm{P}(\mathrm{T} T \mathrm{~T} \mathrm{~T})=1 / 16$

$$
\mathrm{P}(\text { all head } \cup \text { all tail })=1 / 16+1 / 16=1 / 8
$$

$$
\therefore p=1 / 8, q=7 / 8 \quad ; x+r=7, r=3
$$

$$
\begin{aligned}
P(X=x) & =(x+r-1) C_{r-1} p^{r} q^{x} \\
P(X=4) & =7-1 C_{3-1}\left(\frac{1}{8}\right)^{3}\left(\frac{7}{8}\right)^{4} \\
& =6 C_{2}\left(\frac{1}{8}\right)^{3}\left(\frac{7}{8}\right)^{4} \\
& =0.0169
\end{aligned}
$$

Example: In a company 5\% defective components are produced. What is the probability that atleast 5 components are to be examined in order to get three defectives?

Solution:

Given, $p=0.05, q=0.95 \quad ; x+r \leq 5, r=3$

$$
\begin{aligned}
& P(X=x)=(x+r-1) C_{r-1} p^{r} q^{x} \\
& \mathrm{P}(\mathrm{X} \geq 2)= 1-\mathrm{P}(\mathrm{X}<2) \\
&=1-\mathrm{P}(\mathrm{X}=0)-\mathrm{P}(\mathrm{X}=1) \\
&= 1-2 \mathrm{C}_{2}(0.05)^{3}(0.95)^{0}-3 \mathrm{C}_{2}(0.05)^{3}(0.95)^{1} \\
&=0.9995 .
\end{aligned}
$$

4-Trinomial Distribution: The binomial distribution can be generalized to the trinomial distribution. The random variables X and Y is said to have trinomial distribution is if they have the joint probability density function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ given by,

$$
f(x, y)=\frac{n!}{x!y!(n-x-y)!} p_{1}^{x} p_{2}^{y} p_{3}^{n-x-y}
$$

where x and y are non-negative integers with

$$
x+y \leq n \text { and } p_{1}, p_{2}, p_{3} \text { are positive proper fraction with } p_{1}+p_{2}+p_{3}=1
$$

5-Multinomial Distribution: The trinomial distribution is generalized to the multinomial distribution as follows:
If a given trial can result in the k outcomes $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ with probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}$, then the probability distribution of the random variables $X_{1}, X_{2}, \ldots, X_{k}$, representing the number of occurrences for $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ in n independent trials, is
with $\sum_{i=0}^{k-1} x_{i} \leq n \quad$ and $\quad \sum_{i=0}^{k} p_{i}=1$
Moment Generating Function of Multinomial Distribution:

$$
M\left(t_{1}, t_{2}, \ldots t_{k-1}\right)=\left[p_{1} e^{t_{1}}+p_{2} e^{t_{2}}+\ldots+p_{k-1} e^{t_{k-1}}+p_{k}\right]^{n}
$$

6-Poisson Distribution: If X is a discrete random variable that can assume the values $0,1,2, \ldots$ such that its probability mass function is given by

$$
P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad, x=0,1,2, \ldots ; \lambda>0 .
$$

Then X is said to follow a Poisson distribution with parameter λ.
Poisson distribution is a limiting case of binomial distribution under the following assumptions.

- The number of trials ' n ' should be indefinitely large. i.e., $n \rightarrow \infty$.
- The probability of successes ' p ' for each trial is indefinitely small.
- $n p=\lambda$, should be finite where λ is a constant.

Moment Generating Function of Poisson Distribution:

$$
\begin{aligned}
M(t) & =\sum_{x=0}^{\infty} e^{t x} p_{x} \\
& =\sum_{x=0}^{\infty} e^{t x} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\left(e^{t} \lambda\right)^{x}}{x!}, \quad \because e^{a}=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} \\
& =e^{-\lambda} e^{e^{t} \lambda} \\
& =e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Mean and Variance of Poisson Distribution:

$$
\begin{aligned}
& M^{\prime}(t)=e^{-\lambda} e^{e^{\lambda} \lambda} \lambda e^{t} \\
& M^{\prime \prime}(t)=\lambda e^{-\lambda}\left[e^{t}\left(e^{e^{\prime} \lambda} \lambda e^{t}\right)+e^{e^{\prime} \lambda} e^{t}\right] \\
& E[X]=M^{\prime}(0)=e^{-\lambda} e^{e^{\prime} \lambda} \lambda e^{0} \lambda=\lambda \\
& E\left[X^{2}\right]=M^{\prime \prime}(0)=\lambda e^{-\lambda}\left[e^{0}\left(e^{e^{\lambda} \lambda} \lambda e^{0}\right)+e^{e^{0} \lambda} e^{0}\right]=\lambda e^{-\lambda}\left[\lambda e^{\lambda}+e^{\lambda}\right]=\lambda^{2}+\lambda
\end{aligned}
$$

Mean, $E[X]=\lambda$
Variance, $\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda$

Example: A random variable X follows Poisson distribution and if $\mathrm{P}(\mathrm{X}=1)=2 \mathrm{P}(\mathrm{X}=2)$,
find (i) $\mathrm{P}(\mathrm{X}=0)$
(ii) S.D. of X.

Solution: Given that $\mathrm{P}(\mathrm{X}=1)=2 \mathrm{P}(\mathrm{X}=2)$

$$
\begin{aligned}
& \frac{e^{-\lambda} \lambda^{1}}{1!}=2 \frac{e^{-\lambda} \lambda^{2}}{2!} \\
& \Rightarrow \lambda=1
\end{aligned}
$$

(i) $P(X=0)=\frac{e^{-\lambda} \lambda^{0}}{0!}=e^{-1}=0.3679$
(ii) S.D. of $\mathrm{X}=\sqrt{\operatorname{var} X}=\sqrt{\lambda}=1$

Continuous Probability Distribution:

1-Exponential distribution: A random variable X is said to have exponential distribution with parameter $\alpha>0$ if its probability density function is given by

$$
\begin{aligned}
f(x) & =\alpha e^{-\alpha x}, x \geq 0 \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

Gamma Function: In Integral Calculus, the integral

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y, \quad \alpha>0
$$

is called the gamma function, with

1. $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$
2. $\Gamma(\alpha+1)=\alpha$!
3. $\Gamma(1)=1$
4. $\Gamma(1 / 2)=\sqrt{\pi}$

2- Gamma Distribution: A random variable X is said to have gamma distribution with parameter α if its probability density function is given by

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha) \beta^{\alpha}}, \quad 0<x<\infty \\
0, \quad \text { elsewhere }
\end{array}\right.
$$

Moment Generating function of Gamma Distribution:

$$
\begin{aligned}
M(t) & =E\left[e^{t X}\right] \\
& =\int_{0}^{\infty} e^{t x} \frac{x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha) \beta^{\alpha}} d x \\
& =\int_{0}^{\infty} \frac{x^{\alpha-1} e^{-x\left(\frac{1-\beta t}{\beta}\right)}}{\Gamma(\alpha) \beta^{\alpha}} d x \\
& \int_{0}^{\infty} \frac{\left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y}}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta y}{1-\beta t}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } y=\frac{1-\beta t}{\beta} x \\
& \Rightarrow x=\frac{\beta}{1-\beta t} y \\
& \therefore d x=\frac{\beta}{1-\beta t} d y
\end{aligned}
$$

$$
\begin{aligned}
M(t) & =\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta}{1-\beta t}\right)^{\alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \\
& =\frac{1}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta}{1-\beta t}\right)^{\varepsilon} \Gamma(\alpha) \\
& =(1-\beta t)^{-\alpha}, \quad \text { if } t<\frac{1}{\beta}
\end{aligned}
$$

Also

$$
\begin{aligned}
& M^{\prime}(t)=\alpha \beta(1-2 \beta t)^{-\alpha-1} \\
& M^{\prime \prime}(t)=\alpha(\alpha+1) \beta^{2}(1-\beta t)^{-\alpha-2} \\
& E(X)=M^{\prime}(0)=\alpha \beta \\
& E\left(X^{2}\right)=M^{\prime \prime}(0)=\alpha(\alpha+1) \beta^{2}
\end{aligned}
$$

Mean,

Variance, $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=\alpha^{2} \beta^{2}+\alpha \beta^{2}-\alpha^{2} \beta^{2}=\alpha \beta^{2}$

3-Normal Distribution: Let X be a continuous random variable have a normal distribution with parameter a (mean) and b^{2} (variance) if its probability density function is given by the probability law:

$$
f(x)=\frac{1}{b \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-a}{b}\right)^{2}},-\infty<x<\infty, b>0
$$

Moment Generating Function of Normal Distribution: The moment generating function is
and

$$
\begin{aligned}
& M(t)=e^{a t+\frac{b^{2} t^{2}}{2}} \\
& M^{\prime}(t)=\left(a+b^{2} t\right) e^{a t+\frac{b^{2} t^{2}}{2}} \\
& M^{\prime \prime}(t)=\left(a+b^{2} t\right)^{2} e^{a t+\frac{b^{2} t^{2}}{2}}+b^{2} e^{a t+\frac{b^{2} t^{2}}{2}}
\end{aligned}
$$

Mean, $\quad \mu=E[X]=M^{\prime}(0)=a$

$$
E\left[X^{2}\right]=M^{\prime \prime}(0)=a^{2}+b^{2}
$$

Variance, $\sigma^{2}=\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=a^{2}+b^{2}-a^{2}=b^{2}$

Theorem: If the random variable X is $\mathrm{n}\left(\mu, \sigma^{2}\right)$ then the random variable $W=(X-\mu) / \sigma$ is $n(0,1)$
Proof: Let $\mathrm{G}(\mathrm{w})$ and $\mathrm{g}(\mathrm{w})$ be the distribution and density function of W and $W=(X-\mu) / \sigma$.

$$
\begin{aligned}
G(w) & =P[W \leq w] \\
& =P\left[\frac{X-\mu}{\sigma} \leq w\right] \\
& =P[X \leq \mu+\sigma w] \\
& =\int_{x=-\infty}^{x=\mu+\sigma w} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
\end{aligned}
$$

Let, $\quad y=\frac{x-\mu}{\sigma}$ i.e, $x=\mu+y \sigma, \therefore d x=\sigma d y$
when $\quad x=-\infty, y=-\infty ; x=\mu+w \sigma, y=w$

Hence

$$
\begin{aligned}
G(w) & =\int_{y=-\infty}^{y=w} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} \sigma d y \\
g(w)=G^{\prime}(w) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} w^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{w-0}{1}\right)^{2}},-\infty<w<\infty
\end{aligned}
$$

which is $n(0,1)$

Bivariate Normal Distribution: Let X and Y be two random variables having the joint probability density function

$$
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{q}{2}},-\infty<x<\infty,-\infty<y<\infty
$$

where $\quad q=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]$,

$$
\sigma_{1}>0, \sigma_{2}>0,-1<\rho<1
$$

then X and Y are said to have a bivariate normal distribution.

Theorem: Let X and Y have a bivariate normal distribution. Prove that marginal probability density function of X and Y are respectively
$n\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $n\left(\mu_{2}, \sigma_{2}^{2}\right)$ and ρ is the correlation coefficient between X and Y .

Proof: Marginal density function of X,

$$
f_{1}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{-\infty}^{\infty} \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{q}{2}} d y
$$

where

$$
\begin{aligned}
& q=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
& \left(1-\rho^{2}\right) q=\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2} \\
& =\left[\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)-\rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\right]^{2}-\rho^{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2} \\
& =\frac{1}{\sigma_{2}}\left[y-\mu_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right]^{2}+\left(1-\rho^{2}\right)\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\rho^{2}\right) q=\frac{1}{\sigma_{2}}[y-b]^{2}+\left(1-\rho^{2}\right)\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}, b=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right) \\
& \therefore \frac{q}{2}=\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{y-b}{\sigma_{2}}\right]^{2}+\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}
\end{aligned}
$$

thus

$$
\begin{aligned}
f_{1}(x) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{q}{2}} d y \\
& =\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_{2} \sqrt{1-\rho^{2}}}\right)^{2}} d y \\
& =\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)}, \quad \because \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

Normal p.d.f. with mean b and variance $\sigma_{2}^{2}\left(1-\rho^{2}\right)$

Now,

$$
f(y / x)=\frac{f(x, y)}{f_{1}(x)}=\frac{1}{\sqrt{2 \pi} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_{2} \sqrt{1-\rho^{2}}}\right)^{2}},-\infty<y<\infty
$$

Which is $n\left(b, \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)$
Here b is the conditional mean of Y given $\mathrm{X}=\mathrm{x}$,

Similarly,

$$
b=E[Y / x]=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)
$$

$$
E[X / y]=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right)
$$

Coefficient of x in $\mathrm{E}[\mathrm{Y} / \mathrm{x}] \times$ Coefficient of y in $\mathrm{E}[\mathrm{X} / \mathrm{y}]$

$$
=\rho \frac{\sigma_{2}}{\sigma_{1}} \times \rho \frac{\sigma_{1}}{\sigma_{2}}=\rho^{2}
$$

Moment Generating Function of Bivariate Normal Distribution:

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =E\left[e^{t_{1} X+t_{2} Y}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_{1} x+t_{2} y} f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} e^{t_{1} x} f_{1}(x)\left[\int_{-\infty}^{\infty} e^{t_{2} y} f(y / x) d x\right] d y, \quad \because f(y / x)=\frac{f(x, y)}{f_{1}(x)}
\end{aligned}
$$

Since $\int^{\infty} e^{t y} y(y / x) d x$ is the moment generating function of the coinditional probability function $\mathrm{f}(\mathrm{y} / \mathrm{x})$. Also $\mathrm{f}(\mathrm{y} / \mathrm{x})$ is a normal p.d.f. with mean $\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)$ and variance $\sigma_{2}^{2}\left(1-\rho^{2}\right)$.

$$
\int_{-\infty}^{\infty} e^{t y} f(y / x) d x=e^{\left\{t_{2}\left[\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right]+\frac{\sigma^{2} \sigma_{2}^{2}}{2}\left(1-\rho^{2}\right)\right\}}
$$

thus,

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =\int_{-\infty}^{\infty} e^{t_{1} x} f_{1}(x) e^{\left\{t_{2}\left[\mu_{2}+\frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)\right]+\frac{\tau_{2} \sigma_{2}^{2}}{2}\left(1-\rho^{2}\right\}\right.} d x \\
& =e^{\left.\left\{\left[\mu_{2} t_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}} \mu_{2}\right)\right]+\frac{t \sigma_{2}^{2} z_{2}^{2}}{2}\left(1-\rho^{2}\right)\right\}} \int_{-\infty}^{\infty} e^{\left(t_{1}+t_{2} \rho \frac{\sigma_{2}}{\sigma_{1}}\right) x} f_{1}(x) d x
\end{aligned}
$$

Also $\mathrm{f}_{1}(\mathrm{x})$ is the normal p.d.f. with mean μ_{1} variance σ_{1}^{2}

$$
\left.\left.\left.\int_{-\infty}^{\infty} e^{\left(t_{1}+t_{2} \rho\right.} \frac{\sigma_{2}}{\sigma_{1}}\right)^{x} f_{1}(x) d x=e^{\left(\mu _ { 1 } \left(t_{1}+t_{2} \rho\right.\right.} \rho_{\sigma_{1}}^{\sigma_{2}}\right)+\frac{\sigma_{1}^{2}}{2}\left(t_{1}+t_{2} \frac{\sigma_{2}}{\sigma_{1}}\right)^{2}\right)
$$

$$
\begin{aligned}
M\left(t_{1}, t_{2}\right) & =e^{\left.\left\{\left[\mu_{2} t_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}} \mu t_{2}\right)\right]+\frac{t_{2}^{2} \sigma_{2}^{2}}{2}\left(1-\rho^{2}\right)\right\}} e^{\left(\mu_{1}\left(t_{1}+t_{2} \rho \frac{\sigma_{2}}{\sigma_{1}}\right)+\frac{\sigma_{1}^{2}}{2}\left(t_{1}+t_{2} \rho \frac{\sigma_{2}}{\sigma_{1}}\right)^{2}\right)} \\
& =e^{\left(\mu_{1} t_{1}+\mu_{2} t_{2}+\frac{\sigma_{1}^{2} t_{1}^{2}+\sigma_{2}^{2} t_{2}^{2}+2 \rho \sigma_{1} \sigma_{2} t_{1} t_{2}}{2}\right)}
\end{aligned}
$$

Which is the moment generating function of bivariate normal distribution. It is to note that, if $\rho=0$, then $M\left(t_{1}, t_{2}\right)=M\left(t_{1}, 0\right) M\left(0, t_{2}\right)$. Thus X and Y are independent when $\rho=0$.

Transformation of Random Variables: If X and Y are random variables with joint probability density function $f_{x y}(x, y)$ and if $Z=g(X, Y)$ and $\mathrm{W}=\mathrm{h}(\mathrm{X}, \mathrm{Y})$ are two other random variables, then the joint probability density function of Z and W is given by $f_{z v}(z, w)=f_{x y}(x, y)|J|$
where

$$
J=\frac{\partial(x, y)}{\partial(z, w)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
\end{array}\right|
$$

is called the Jacobian of the transformation

Reference Books:

1. Erwin Kreyszig, Advance Engineering Mathematics, $9^{\text {th }}$ Edition, John Wiley \& Sons, 2006.
2. Sheldon Ross, A first course in Probability, $8^{\text {th }}$ Edition, Pearson Education India.
3. W. Feller An Introduction to Probability Theory and its Applications, Vol. 1, $3^{\text {rd }}$ Edition, Wiley, 1968.
4. S. C. Gupta and V. . Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Sons.
5. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003.
6. A. M. Mood, F. A. Graybill and D. C. Bose, Introduction to Theory of Statistics. $3{ }^{\text {rd }}$ Edition, Tata McGraw-Hill Publication.

THANK YOU

