Random Variables and probability Distributions-III

Mr. Anup Singh Department of Mathematics Mahatma Gandhi Central university Motihari-845401, Bihar, India E-mail: anup.singh254@gmail.com

Moment Generating function: Let f(x,y) denote the joint probability density function of the two random variables X and Y. If $E[e^{t_1X+t_2Y}]$ exists for $-h_1 < t_1 < h_1$, $-h_2 < t_2 < h_2$, where h_1 and h_2 are positive, it is denoted by $M(t_1, t_2)$ and is called the moment-generating function of the joint distribution of X and Y.

Hence, the Marginal Distribution of X and Y are

 $M(t_1,0) = E[e^{t_1X}] = M(t_1)$ and $M(0,t_2) = E[e^{t_2Y}] = M(t_2)$

Also,

$$E(X^{K}Y^{m}) = \left[\frac{\partial^{k+m}}{\partial t_{1}^{k}\partial t_{2}^{m}}M(t_{1},t_{2})\right]_{t_{1}=0,t_{2}=0}$$

Independence of Two Random Variables:

(1) Two random variables X and Y, forming a **discrete random** variable, are independent if and only if: $p_{ij} = p_{*j} \cdot p_{i^*}$

where p_{ij} is their joint probability mass function and p_{i*} and p_{*j} are their marginal probability mass functions.

(2) Two random variables X and Y, forming an absolutely **continuous random variable**, are independent if and only if: $f(x, y) = f_X(x)f_Y(y)$

where f(x, y) is their joint probability mass function and $f_X(x)$ and $f_Y(y)$ are their marginal probability mass functions.

• Let the stochastically independent random variables X and Y have the marginal probability density functions $f_X(x)$ and $f_Y(y)$, respectively. Then E[XY] = E[X]E[Y]

Example: Let
$$f(x, y) = \begin{cases} e^{-y}, \ 0 < x < y < \infty \\ 0, \ elsewhere \end{cases}$$

be the joint probability density function of X and Y. Find the moment generating function of this distribution.

Solution: Moment Generating Function of X and Y,

M

$$(t_{1}, t_{2}) = E[e^{t_{1}x + t_{2}y}]$$

$$= \int_{0}^{\infty} \int_{0}^{y} e^{t_{1}x + t_{2}y} f(x, y) dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{y} e^{t_{1}x + t_{2}y} e^{-y} dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{y} e^{t_{1}x + (t_{2} - 1)y} dx dy$$

$$= \int_{0}^{\infty} e^{(t_{2} - 1)y} \left[\frac{e^{t_{1}x}}{t_{1}}\right]_{0}^{y} dy$$

$$= \int_{0}^{\infty} e^{(t_{2} - 1)y} \left[\frac{e^{t_{1}y} - 1}{t_{1}}\right]_{0}^{y} dy$$

$$M(t_1, t_2) = \frac{1}{t_1} \int_0^\infty \left[e^{-(1-t_1-t_2)y} - e^{-(1-t_2)y} \right] dy$$
$$= \frac{1}{t_1} \left[\frac{1}{1-t_1-t_2} - \frac{1}{1-t_2} \right]$$
$$= \frac{1}{(1-t_1-t_2)(1-t_2)}$$

Discrete Probability Distributions

1-Bernoulli Distribution: A random variable X is said to have a Bernoulli distribution with parameter p if its probability mass function is given by:

$$P(X = x) = \frac{p^{x}(1-p)^{1-x}}{x!}$$
, for $x = 0, 1$
=0 otherwise.
The parameter *p* satisfies $0 \le p \le 1$. Often (1-*p*) is denoted as *q*.

2-Binomial Distribution: If X is discrete random variable which can take values 0,1,2,3,...,n such that $P(X = x) = nC_x p^x q^{n-x}$, x = 0,1,2,...,n where p+q=1 then X is said to follow a Binomial distribution with parameters *n* and *p*.

Moment Generating Function of Binomial Distribution:

$$M(t) = E[e^{tX}]$$

= $\sum_{x=0}^{n} e^{tx} p_{x}$
= $\sum_{x=0}^{n} e^{tx} nC_{x} p^{x} q^{n-x}$
= $\sum_{x=0}^{n} nC_{x} (pe^{t})^{x} q^{n-x}$, $\because (a+b)^{n} = \sum_{r=0}^{n} nC_{r} a^{r} b^{n-r}$
= $(pe^{t} + q)$

Derivatives of MGF,

$$M'(t) = n(pe^{t} + q)^{n-1} \times pe^{t}$$

$$M''(t) = np[(pe^{t} + q)^{n-1} \times e^{t} + (n-1)(pe^{t} + q)^{n-2} pe^{2t}]$$

Mean and Variance of Binomial Distribution

$$E(X) = M'(0) = np$$

$$E(X^{2}) = M''(0) = np[1 + (n-1)p]$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = npq$$

Mean :*np*

Variance : npq

Example: In a large consignment of electric bulbs 10 % are defective. A random sample of 20 is taken for inspection. Find the probability that (i) All are good bulbs (ii) at most 3 are defective bulbs (iii) Exactly there are three defective bulbs.

Solution: Let X be the event of defective bulbs,

p = 0.1 q = 0.9 n = 20

(i) $P(X = 0) = 20C_0 (0.1)^0 (0.9)^{20} = 0.1216$

 $\begin{aligned} \text{(ii)} \mathbf{P}(\mathbf{X} \leq 3) &= p(0) + p(1) + p(2) + p(3) \\ &= 20\mathbf{C}_0 \ (0.1)^0 \ (0.9)^{20} \ + 20\mathbf{C}_1 \ (0.1)^1 \ (0.9)^{19} \\ &+ 20\mathbf{C}_2 \ (0.1)^3 \ (0.9)^{18} + 20\mathbf{C}_3 \ (0.1)^3 \ (0.9)^{17} \\ &= 0.8666 \end{aligned}$ $\begin{aligned} \text{(iii)} \mathbf{P}(\mathbf{X} = 3) &= 20\mathbf{C}_3 \ (0.1)^3 \ (0.9)^{17} = 0.19. \end{aligned}$

3-Negative Binomial Distribution: Let p(x) be the probability that exactly x + r trails will be required to produce r success. Clearly the last trial must be a success and the probability is p. In the remaining x + r - 1 trials, there must be r - 1 successes and the probability of this is given by $\int (x+r-1)C_{r-1}p^{r}a^{x}, x = 0.123...$

$$p(X = x) = \begin{cases} (x + r - 1)C_{r-1}p^r q^x, & x = 0, 1, 2, 3\\ 0, & otherwise \end{cases}$$

Moment Generating Function of Negative Binomial Distribution:

$$\begin{split} M(t) &= \sum_{x=0}^{\infty} e^{tx} p_x \\ &= \sum_{x=0}^{\infty} e^{tx} (x+r-1) C_{r-1} p^r q^x \\ &= p^r \sum_{x=0}^{\infty} (x+r-1) C_{r-1} (q e^t)^x \\ &= p^r \Biggl[\frac{(r-1) C_0 (q e^t)^0 + (r) C_1 (q e^t)^1 + (r+1) C_2 (q e^t)^2}{+ (r+2) C_3 (q e^t)^3 + \dots} \Biggr] \\ &= p^r \Biggl[1 + \frac{r}{1!} (q e^t) + \frac{(r+1)r}{2!} (q e^t)^2 + \frac{(r+2)(r+1)r}{3!} (q e^t)^3 + \dots \Biggr] \end{split}$$

$$\therefore (1-a)^{-n} = 1 + \frac{n}{1!}a + \frac{n(n+1)}{2!}a^2 + \frac{n(n+1)(n+2)}{3!}a^3 + \dots$$

$$M(t) = p^{r}(1-qe^{t})^{-r}$$
, for $t < -\log_{e} q$
Derivatives of MGF,

$$M'(t) = p^{r}(-r)(1-qe^{t})^{-r-1}(-qe^{t}) = rp^{r}qe^{t}(1-qe^{t})^{-r-1}$$
$$M''(t) = rp^{r}q\left[e^{t}(-r-1)(1-qe^{t})^{-r-2}(-qe^{t}) + e^{t}(1-qe^{t})^{-r-1}\right]$$
$$= rp^{r}q(1-qe^{t})^{-r-1}e^{t}\left[(r+1)(1-qe^{t})^{-1}(qe^{t}) + 1\right]$$

Mean and Variance of Negative Binomial Distribution:

Mean, $E[X] = M'(0) = rp^{r}qe^{0}(1-qe^{0})^{-r-1}$ = $rp^{r}q(1-q)^{-r-1}$ = $rp^{r}qp^{-r-1}$ = $\frac{rq}{p}$

$$E[X^{2}] = M''(0) = rp^{r}q(1 - qe^{0})^{-r-1}e^{0}[(r+1)(1 - qe^{0})^{-1}(qe^{0}) + 1]$$

= $rp^{r}qp^{-r-1}[(r+1)p^{-1}q + 1]$
= $rqp^{-1}[(r+1)p^{-1}q + 1]$
= $\frac{r(r+1)q^{2}}{p^{2}} + \frac{rq}{p}$

Example: Find the probability that in tossing 4 coins one will get either all heads or all tails for the third time on the seventh toss.

Solution: P(H H H H) = 1/16; P(T T T) = 1/16

P(all head \cup all tail) = 1/16 + 1/16 = 1/8

$$\therefore p = 1/8, q = 7/8$$
; $x + r = 7, r = 3$

$$P(X = x) = (x + r - 1)C_{r-1}p^{r}q^{x}$$

$$P(X = 4) = 7 - 1C_{3-1}\left(\frac{1}{8}\right)^{3}\left(\frac{7}{8}\right)^{4}$$

$$= 6C_{2}\left(\frac{1}{8}\right)^{3}\left(\frac{7}{8}\right)^{4}$$

$$= 0.0169$$

Example: In a company 5% defective components are produced. What is the probability that atleast 5 components are to be examined in order to get three defectives?

Solution:

Given, p = 0.05, q = 0.95; $x + r \le 5$, r = 3 $P(X = x) = (x + r - 1)C_{r-1}p^r q^x$ $P(X \ge 2) = 1 - P(X < 2)$ = 1 - P(X = 0) - P(X = 1) $= 1 - 2C_2 (0.05)^3 (0.95)^0 - 3C_2 (0.05)^3 (0.95)^1$ = 0.9995. 4-Trinomial Distribution: The binomial distribution can be generalized to the trinomial distribution. The random variables X and Y is said to have trinomial distribution is if they have the joint probability density function f(x,y) given by,

$$f(x, y) = \frac{n!}{x! \, y! (n - x - y)!} \, p_1^x \, p_2^y \, p_3^{n - x - y}$$

where *x* and *y* are non-negative integers with $x+y \le n$ and p_1, p_2, p_3 are positive proper fraction with $p_1+p_2+p_3=1$

5-Multinomial Distribution: The trinomial distribution is generalized to the multinomial distribution as follows:

If a given trial can result in the k outcomes E_1, E_2, \ldots, E_k with probabilities p_1, p_2, \ldots, p_k , then the probability distribution of the random variables X_1, X_2, \ldots, X_k , representing the number of occurrences for E_1, E_2, \ldots, E_k in n independent trials, is

 $f(x_{1}, x_{2}, ..., x_{k}) = \frac{n!}{x_{1}! x_{2}! ... x_{k-1}! x_{k}!} p_{1}^{x_{1}} p_{2}^{x_{2}} ... p_{k-1}^{x_{k-1}} p_{k}^{x_{k}}$ with $\sum_{i=0}^{k-1} x_{i} \le n$ and $\sum_{i=0}^{k} p_{i} = 1$ Moment Generating Function of Multinomial Distribution: $M(t_{1}, t_{2}, ... t_{k-1}) = [p_{1}e^{t_{1}} + p_{2}e^{t_{2}} + ... + p_{k-1}e^{t_{k-1}} + p_{k}]^{n}$ 6-Poisson Distribution: If X is a discrete random variable that can assume the values 0,1,2,... such that its probability mass function is given by

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!} , x = 0, 1, 2, ...; \lambda > 0.$$

Then X is said to follow a Poisson distribution with parameter λ . Poisson distribution is a limiting case of binomial distribution under the following assumptions.

- The number of trials 'n' should be indefinitely large. i.e., $n \to \infty$.
- The probability of successes 'p' for each trial is indefinitely small.
- $np = \lambda$, should be finite where λ is a constant.

Moment Generating Function of Poisson Distribution:

$$M(t) = \sum_{x=0}^{\infty} e^{tx} p_x$$

= $\sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!}$
= $e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^t \lambda)^x}{x!}$, $\therefore e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}$
= $e^{-\lambda} e^{e^t \lambda}$
= $e^{\lambda(e^t - 1)}$

Mean and Variance of Poisson Distribution:

$$M'(t) = e^{-\lambda} e^{e^{t\lambda}} \lambda e^{t}$$

$$M''(t) = \lambda e^{-\lambda} \left[e^{t} (e^{e^{t\lambda}} \lambda e^{t}) + e^{e^{t\lambda}} e^{t} \right]$$

$$E[X] = M'(0) = e^{-\lambda} e^{e^{0\lambda}} \lambda e^{0\lambda} = \lambda$$

$$E[X^{2}] = M''(0) = \lambda e^{-\lambda} \left[e^{0} (e^{e^{0\lambda}} \lambda e^{0}) + e^{e^{0\lambda}} e^{0} \right] = \lambda e^{-\lambda} \left[\lambda e^{\lambda} + e^{\lambda} \right] = \lambda^{2} + \lambda$$

Mean, $E[X] = \lambda$ Variance, $Var[X] = E[X^2] - E[X]^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$ Example: A random variable X follows Poisson distribution and if P(X=1) = 2P(X=2), find (i) P(X = 0)(ii) S.D. of X.

Solution: Given that P(X=1) = 2P(X=2) $\frac{e^{-\lambda}\lambda^{1}}{1!} = 2\frac{e^{-\lambda}\lambda^{2}}{2!}$ $\Rightarrow \lambda = 1$ (i) $P(X=0) = \frac{e^{-\lambda}\lambda^{0}}{0!} = e^{-1} = 0.3679$

(ii) S.D. of X = $\sqrt{\operatorname{var} X} = \sqrt{\lambda} = 1$

Continuous Probability Distribution:

1-Exponential distribution: A random variable X is said to have exponential distribution with parameter $\alpha > 0$ if its probability density function is given by

$$f(x) = \alpha \ e^{-\alpha \ x}, x \ge 0$$

= 0, otherwise

Gamma Function: In Integral Calculus, the integral $\Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy, \quad \alpha > 0$

- is called the gamma function, with
- 1. $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$
- 2. $\Gamma(\alpha+1) = \alpha!$
- 3. $\Gamma(1) = 1$
- 4. $\Gamma(1/2) = \sqrt{\pi}$

2- Gamma Distribution: A random variable X is said to have gamma distribution with parameter α if its probability density function is given by

$$f(x) = \begin{cases} \frac{x^{\alpha - 1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)\beta^{\alpha}}, & 0 < x < \infty \\ 0, & elsewhere \end{cases}$$

Moment Generating function of Gamma Distribution:

$$M(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta}{1-\beta t}\right)^{\alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-y} dy$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \left(\frac{\beta}{1-\beta t}\right)^{\varepsilon} \Gamma(\alpha)$$
$$= (1-\beta t)^{-\alpha}, \qquad \text{if } t < \frac{1}{\beta}$$

Also $M'(t) = \alpha\beta(1 - 2\beta t)^{-\alpha - 1}$ $M''(t) = \alpha(\alpha + 1)\beta^{2}(1 - \beta t)^{-\alpha - 2}$ Mean, $E(X) = M'(0) = \alpha\beta$ $E(X^{2}) = M''(0) = \alpha(\alpha + 1)\beta^{2}$

Variance, $Var(X) = E(X^2) - E(X)^2 = \alpha^2 \beta^2 + \alpha \beta^2 - \alpha^2 \beta^2 = \alpha \beta^2$

3-Normal Distribution: Let X be a continuous random variable have a normal distribution with parameter a (mean) and b^2 (variance) if its probability density function is given by the probability law:

$$f(x) = \frac{1}{b\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-a}{b}\right)^2}, \ -\infty < x < \infty, b > 0$$

Moment Generating Function of Normal Distribution: The moment generating function is

$$M(t) = e^{at + \frac{b^2 t^2}{2}}$$
$$M'(t) = (a + b^2 t)e^{at + \frac{b^2 t^2}{2}}$$

and

$$M''(t) = (a+b^{2}t)^{2}e^{at+\frac{b^{2}t^{2}}{2}} + b^{2}e^{at+\frac{b^{2}t^{2}}{2}}$$

Mean,
$$\mu = E[X] = M'(0) = a$$

 $E[X^2] = M''(0) = a^2 + b^2$

Variance, $\sigma^2 = Var[X] = E[X^2] - E[X]^2 = a^2 + b^2 - a^2 = b^2$

Theorem: If the random variable X is $n(\mu,\sigma^2)$ then the random variable $W=(X - \mu)/\sigma$ is n(0,1)

Proof: Let G(w) and g(w) be the distribution and density function of W and W=(X - μ)/ σ .

$$\begin{aligned} G(w) &= P[W \le w] \\ &= P\left[\frac{X - \mu}{\sigma} \le w\right] \\ &= P[X \le \mu + \sigma w] \\ &= \int_{x = -\infty}^{x = \mu + \sigma w} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^2} dx \end{aligned}$$

Let,
$$y = \frac{x-\mu}{\sigma}$$
 i.e., $x = \mu + y\sigma$, $\therefore dx = \sigma dy$
when $x = -\infty, y = -\infty; x = \mu + w\sigma, y = w$

$$G(w) = \int_{y=-\infty}^{y=w} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}y^2} \sigma \, dy$$
$$g(w) = G'(w) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}w^2}$$
$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{w-0}{1}\right)^2}, -\infty < w < \infty$$

which is n(0,1)

Bivariate Normal Distribution: Let X and Y be two random variables having the joint probability density function

$$f(x, y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{q}{2}}, \ -\infty < x < \infty, \ -\infty < y < \infty$$

where
$$q = \frac{1}{1 - \rho^2} \left[\left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x - \mu_1}{\sigma_1} \right) \left(\frac{y - \mu_2}{\sigma_2} \right) + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \right],$$

 $\sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1$

then X and Y are said to have a bivariate normal distribution.

Theorem: Let X and Y have a bivariate normal distribution. Prove that marginal probability density function of X and Y are respectively

 $n(\mu_1, \sigma_1^2)$ and $n(\mu_2, \sigma_2^2)$ and ρ is the correlation coefficient between X and Y.

Proof: Marginal density function of X,

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{q}{2}} dy$$

where

$$q = \frac{1}{1 - \rho^2} \left[\left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x - \mu_1}{\sigma_1} \right) \left(\frac{y - \mu_2}{\sigma_2} \right) + \left(\frac{y - \mu_2}{\sigma_2} \right)^2 \right]$$

$$(1 - \rho^2) q = \left(\frac{x - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x - \mu_1}{\sigma_1} \right) \left(\frac{y - \mu_2}{\sigma_2} \right) + \left(\frac{y - \mu_2}{\sigma_2} \right)^2$$

$$= \left[\left(\frac{y - \mu_2}{\sigma_2} \right) - \rho \left(\frac{x - \mu_1}{\sigma_1} \right) \right]^2 - \rho^2 \left(\frac{x - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x - \mu_1}{\sigma_1} \right)^2$$

$$= \frac{1}{\sigma_2} \left[y - \mu_2 - \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1) \right]^2 + (1 - \rho^2) \left(\frac{x - \mu_1}{\sigma_1} \right)^2$$

$$(1-\rho^{2})q = \frac{1}{\sigma_{2}}[y-b]^{2} + (1-\rho^{2})\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}, \ b = \mu_{2} + \rho\frac{\sigma_{2}}{\sigma_{1}}(x-\mu_{1})$$
$$\therefore \frac{q}{2} = \frac{1}{2(1-\rho^{2})}\left[\frac{y-b}{\sigma_{2}}\right]^{2} + \frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}$$
$$f_{1}(x) = \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_{1}\sigma_{2}}\sqrt{1-\rho^{2}} e^{-\frac{q}{2}}dy$$
$$= \frac{1}{\sigma_{1}}\sqrt{2\pi} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{2}}\sqrt{1-\rho^{2}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_{2}}\right)^{2}}dy$$
$$= \frac{1}{\sigma_{1}}\sqrt{2\pi} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)}, \qquad \because \int_{-\infty}^{\infty} f(x)dx = 1,$$

Normal p.d.f. with mean b and variance $\sigma_2^2(1-\rho^2)$

thus

Now,

$$f(y/x) = \frac{f(x, y)}{f_1(x)} = \frac{1}{\sqrt{2\pi}\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_2\sqrt{1-\rho^2}}\right)^2}, -\infty < y < \infty$$

Which is $n(b, \sigma_2^2(1-\rho^2))$

Here *b* is the conditional mean of Y given X = x,

$$b = E[Y / x] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1)$$
$$E[X / y] = \mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2)$$

Similarly,

Coefficient of x in $E[Y/x] \times Coefficient of y in E[X/y]$

$$= \rho \frac{\sigma_2}{\sigma_1} \times \rho \frac{\sigma_1}{\sigma_2} = \rho^2$$

Moment Generating Function of Bivariate Normal Distribution:

$$M(t_1, t_2) = E[e^{t_1 X + t_2 Y}]$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1 x + t_2 y} f(x, y) dx dy$$

=
$$\int_{-\infty}^{\infty} e^{t_1 x} f_1(x) \left[\int_{-\infty}^{\infty} e^{t_2 y} f(y/x) dx \right] dy, \quad \because f(y/x) = \frac{f(x, y)}{f_1(x)}$$

Since $\int_{0}^{\infty} e^{t_2 y} f(y/x) dx$ is the moment generating function of the conditional probability function f(y/x). Also f(y/x)is a normal p.d.f. with mean $\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1)$ and variance $\sigma_2^2 (1 - \rho^2)$.

$$\int_{-\infty}^{\infty} e^{t_2 y} f(y/x) dx = e^{\left\{t_2 \left[\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1)\right] + \frac{t^2 \sigma_2^2}{2} (1 - \rho^2)\right\}}$$

thus,

$$M(t_{1},t_{2}) = \int_{-\infty}^{\infty} e^{t_{1}x} f_{1}(x) e^{\left\{t_{2}\left[\mu_{2}+\rho\frac{\sigma_{2}}{\sigma_{1}}(x-\mu_{1})\right]+\frac{t_{2}^{2}\sigma_{2}^{2}}{2}(1-\rho^{2})\right\}} dx$$
$$= e^{\left\{\left[\mu_{2}t_{2}-\rho\frac{\sigma_{2}}{\sigma_{1}}\mu t_{2}\right]+\frac{t_{2}^{2}\sigma_{2}^{2}}{2}(1-\rho^{2})\right\}} \int_{-\infty}^{\infty} e^{\left(t_{1}+t_{2}\rho\frac{\sigma_{2}}{\sigma_{1}}\right)x} f_{1}(x) dx$$

Also $f_1(x)$ is the normal p.d.f. with mean μ_1 variance σ_1^2

$$\int_{-\infty}^{\infty} e^{\left(t_1+t_2\rho\frac{\sigma_2}{\sigma_1}\right)x} f_1(x) dx = e^{\left(\mu_1\left(t_1+t_2\rho\frac{\sigma_2}{\sigma_1}\right)+\frac{\sigma_1^2}{2}\left(t_1+t_2\rho\frac{\sigma_2}{\sigma_1}\right)^2\right)}$$

$$M(t_1, t_2) = e^{\left\{ \left[\mu_2 t_2 - \rho \frac{\sigma_2}{\sigma_1} \mu t_2 \right) \right] + \frac{t_2^2 \sigma_2^2}{2} (1 - \rho^2) \right\}} e^{\left(\mu_1 \left(t_1 + t_2 \rho \frac{\sigma_2}{\sigma_1} \right) + \frac{\sigma_1^2}{2} \left(t_1 + t_2 \rho \frac{\sigma_2}{\sigma_1} \right)^2 \right)}$$
$$= e^{\left(\mu_1 t_1 + \mu_2 t_2 + \frac{\sigma_1^2 t_1^2 + \sigma_2^2 t_2^2 + 2\rho \sigma_1 \sigma_2 t_1 t_2}{2} \right)}$$

Which is the moment generating function of bivariate normal distribution. It is to note that, if $\rho = 0$, then $M(t_1, t_2) = M(t_1, 0)M(0, t_2)$.

Thus X and Y are independent when $\rho = 0$.

Transformation of Random Variables: If X and Y are random variables with joint probability density function $f_{xy}(x,y)$ and if Z = g(X,Y) and W = h(X,Y) are two other random variables, then the joint probability density function of Z and W is given by $f_{zw}(z,w) = f_{xy}(x,y)|J|$

where $I = \frac{\partial(x, y)}{\partial z} = \begin{vmatrix} \frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \end{vmatrix}$

$$J = \frac{\partial(x, y)}{\partial(z, w)} = \begin{vmatrix} \overline{\partial z} & \overline{\partial w} \\ \overline{\partial y} & \overline{\partial y} \\ \overline{\partial z} & \overline{\partial w} \end{vmatrix}$$

is called the Jacobian of the transformation

Reference Books:

1. Erwin Kreyszig, Advance Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

2. Sheldon Ross, A first course in Probability, 8th Edition, Pearson Education India.

3. W. Feller An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Edition, Wiley, 1968.

4. S. C. Gupta and V. . Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand & Sons.

5. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003.

6. A. M. Mood, F. A. Graybill and D. C. Bose, Introduction to Theory of Statistics. 3rd Edition, Tata McGraw-Hill Publication.

THANK YOU