Fluctuations in Thermodynamic Quantities

Dr. Neelabh Srivastava
(Assistant Professor)
Department of Physics
Programme: M.Sc. Physics
Semester: $2^{\text {nd }}$
Motihari-845401, Bihar
E-mail: neelabh@mgcub.ac.in

- The properties of a system vary with time about the mean equilibrium values. It has been observed that in the neighborhood of a critical point, fluctuations in some thermodynamic quantities e.g. pressure (P), energy (E), entropy (S) and specific heat $\left(\mathrm{C}_{\mathrm{V}}\right)$ are predominant.
- So, far we have assumed that the fluctuations in these thermodynamic quantities are quite small.
- In a system which contains small number of particles in equilibrium with its surroundings, fluctuations are violent.
- So, to represent the thermodynamic quantities of a system more precisely, fluctuations in these quantities should be calculated.
- If energy (E) fluctuations in the system of a canonical ensemble are small, it is equivalent to a microcanonical ensemble.
- If both N and E of the system in a grand canonical ensemble fluctuate negligibly then all the three ensembles are equivalent.

Mean-square Deviation

- Consider a quantity n. Its average value is \bar{n} or $\langle n\rangle$ The deviation δ n of the quantity from its average value is defined by -

$$
\begin{align*}
& \delta n \equiv n-\bar{n} \quad \ldots \ldots \ldots \ldots .(1) \\
& \overline{\delta n}=\bar{n}-\bar{n}=0 \quad \ldots \ldots \ldots .(2 \tag{2}
\end{align*}
$$

Rough measure of the fluctuations is provided by the mean-square deviation

$$
\overline{(\delta n)^{2}}=\overline{(n-\bar{n})^{2}}=\overline{n^{2}}-2 \overline{n n}(\bar{n})^{2}
$$

$$
\begin{equation*}
\overline{(\delta n)^{2}}=\overline{n^{2}}-(\bar{n})^{2} \tag{3}
\end{equation*}
$$

- 2
n is called the second moment of the distribution. The standard deviation $\Delta \mathrm{n}$, the root mean square deviation from the mean is defined as -

$$
\begin{equation*}
\Delta n=\left[\overline{(n-\bar{n})^{2}}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

Let P_{i} be the probability of finding a system in the state i and if f_{i} is the value of a physical quantity f when the system is in the state i then average value of f is defined by -

$$
\begin{equation*}
\bar{f}=\sum_{i} P_{i} f_{i} \quad \text { with } \quad \sum_{i} P_{i}=1 \tag{5}
\end{equation*}
$$

Then,

$$
\begin{align*}
& \overline{f-\bar{f}}=\sum P_{i}\left(f_{i}-\bar{f}\right)=\sum P_{i} f_{i}-\bar{f} \sum P_{i} \\
& \overline{f-\bar{f}}=\bar{f}-\bar{f}=0 \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \overline{(f-\bar{f})^{2}}=\sum P_{i}\left(f_{i}-\bar{f}\right)^{2}=\sum P_{i} f_{i}^{2}-2 \bar{f} \sum P_{i} f_{i}+(\bar{f})^{2} \sum P_{i} \\
& \overline{(f-\bar{f})^{2}}=\overline{f^{2}}-2(\bar{f})^{2}+(\bar{f})^{2}=\overline{f^{2}}-(\bar{f})^{2} \ldots \ldots(7) \tag{7}
\end{align*}
$$

and

$$
\Delta f=\left[\overline{f^{2}}-(\bar{f})^{2}\right]^{1 / 2}
$$

Fluctuations in Energy

- Consider a 'closed system' in thermodynamic equilibrium at a given temperature and is represented by a canonical ensemble.
- Since, in this ensemble, system is in thermal equilibrium with a heat reservoir so fluctuations can not occur in temperature but only in energy when the energy is exchanged between the system and the reservoir.

The canonical partition function is

$$
\begin{array}{r}
Z=\sum_{i} \exp \left(-\beta E_{i}\right) \\
\bar{E}=\sum_{i} P_{i} E_{i}=\frac{\sum_{i} E_{i} \exp \left(-\ldots E_{i}\right)}{\sum_{i} \exp \left(-\beta E_{i}\right)}=\frac{-\partial Z / \partial \beta}{Z} \ldots \ldots \ldots . \tag{10}\\
\overline{E^{2}}=\frac{\sum_{i} E_{i}^{2} \exp \left(-\beta E_{i}\right)}{\sum_{i} \exp \left(-\beta E_{i}\right)}=\frac{-\partial^{2} Z / \partial^{2} \beta}{Z} \ldots \ldots \ldots . . \\
-\frac{\partial \bar{E}}{\partial \beta}=\frac{1}{Z}\left(\frac{\partial^{2} Z}{\partial \beta^{2}}\right)-\frac{1}{Z^{2}}\left(\frac{\partial Z}{\partial \beta}\right)^{2}=\overline{E^{2}}-\bar{E}^{2}=\overline{(\delta E)^{2}}
\end{array}
$$

$$
\begin{aligned}
& C_{V}=\left(\frac{\partial \bar{E}}{\partial T}\right)_{V}=\left(\frac{\partial \bar{E}}{\partial \beta}\right)_{V} \frac{d \beta}{d T}=\left(\frac{\partial \bar{E}}{\partial \beta}\right)_{V}\left(-k \beta^{2}\right) \\
& C_{V}=k \beta^{2} \overline{(\delta E)^{2}}
\end{aligned}
$$

A measure of energy fluctuation is the ratio

$$
\begin{equation*}
\frac{\Delta E}{E}=\frac{\left[\overline{(\delta E)^{2}}\right]^{1 / 2}}{\bar{E}}=\frac{\left(k T^{2} C_{V}\right)^{1 / 2}}{\bar{E}} \tag{13}
\end{equation*}
$$

As we know that for an ideal gas,

$$
\begin{gathered}
\bar{E}=N k T \quad \text { and } \\
\frac{\Delta E}{E}=\frac{1}{\sqrt{N}}
\end{gathered} \quad C_{V}=N k
$$

Grand-canonical Ensemble:

Fluctuations in energy can be calculated as done for the case of canonical ensemble. Herein, we study the possibility of concentration fluctuations.
The partition function can be written as -
$Q(T, V, \mu)=\sum_{N, i} \exp \left[\left(N \mu-E_{N_{i}}\right) / \theta\right]$(14)
where $\theta=\mathrm{kT}$
Average number of particles is given by -

$$
\bar{N}=\langle N\rangle=-\left(\frac{\partial \zeta}{\partial \mu}\right)_{V, T}
$$

$$
\begin{gathered}
\bar{N}=-\left(\frac{\partial \zeta}{\partial \mu}\right)_{V, T}=\theta \frac{\partial}{\partial \mu} \ln Q=\frac{\theta}{Q} \frac{\partial Q}{\partial \mu} \\
\overline{N^{2}}=\frac{\sum_{N, i} N^{2} \exp \left[\left(N \mu-E_{N_{i}}\right) / \theta\right]}{\sum_{N, i} \exp \left[\left(N \mu-E_{N_{i}}\right) / \theta\right]}=\frac{\theta^{2}}{Q} \frac{\partial^{2} Q}{\partial \mu^{2}} \\
\overline{(\delta N)^{2}}=\overline{N^{2}}-(\bar{N})^{2}=\theta^{2}\left[\frac{1}{Q} \frac{\partial^{2} Q}{\partial \mu^{2}}-\frac{1}{Q^{2}}\left(\frac{\partial Q}{\partial \mu}\right)^{2}\right] \\
\overline{(\delta N)^{2}}=\theta \frac{\partial \bar{N}}{\partial \mu} \quad \ldots \ldots . . .(15)
\end{gathered}
$$

But, for an ideal classical gas,

$$
\begin{align*}
& \bar{N}=e^{\mu / \theta} \frac{(2 \pi m \theta)^{3 / 2}}{h^{3}} V \tag{16}\\
& \frac{\partial \bar{N}}{\partial \mu}=\frac{\bar{N}}{\theta} \quad \ldots \ldots \ldots(17) \tag{17}\\
& \overline{(\delta N)^{2}}=\bar{N}=\frac{p V}{k T} \quad \ldots
\end{align*}
$$

Thus, concentration fluctuation is given by -

$$
\frac{\Delta N}{N}=\left[\frac{\overline{(\delta N)^{2}}}{(\bar{N})^{2}}\right]^{1 / 2}=\frac{1}{\bar{N}^{1 / 2}}
$$

Concentration fluctuations in

Quantum Statistics

- The variation of average number of particles in the single particle quantum state, i for the system obeying quantum statistics ($\mathrm{FD} \& \mathrm{BE}$) is given by -

$$
\begin{aligned}
& \frac{\partial \overline{n_{i}}}{\partial \mu}=\frac{\partial}{\partial \mu}\left[\frac{1}{\exp \left(\frac{\varepsilon_{i}-\mu}{\theta}\right) \pm 1}\right]=\frac{1}{\theta} \frac{\exp \left(\frac{\varepsilon_{i}-\mu}{\theta}\right)}{\left.\exp \left(\frac{\varepsilon_{i}-\mu}{\theta}\right) \pm \mathbf{1}\right]^{2}} \\
& \frac{\partial \overline{n_{i}}}{\partial \mu}=\frac{1}{\theta}\left[\frac{\left\{\exp \left(\frac{\varepsilon_{i}-\mu}{\theta}\right) \pm 1\right\} \mp 1}{\left\{\exp \left(\frac{\varepsilon_{i}-\mu}{\theta}\right) \pm \mathbf{1}\right\}^{2}}\right]
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial \overline{n_{i}}}{\partial \mu}=\frac{1}{\theta}\left(\overline{n_{i}} \mp{\overline{n_{i}}}^{2}\right)=\frac{1}{\theta} \overline{n_{i}}\left(1 \mp \overline{n_{i}}\right) \tag{20}
\end{equation*}
$$

from eq ${ }^{\mathrm{n}}$. (15)

$$
\begin{equation*}
\overline{\left(\delta n_{i}\right)^{2}}=\theta \frac{\partial \bar{n}}{\partial \mu}=\overline{n_{i}}\left(1 \mp \overline{n_{i}}\right) \tag{21}
\end{equation*}
$$

or,

$$
\frac{\Delta n_{i}}{n_{i}}= \begin{cases}\left(n_{i}^{-1}-1\right)^{1 / 2} & ;(F D) \\ \left(n_{i}^{-1}+1\right)^{12} & ;(B E) \\ \left(n_{i}^{-1}\right)^{\prime 2} & ;(M B)\end{cases}
$$

One-dimensional Random Walk

- Consider the motion of a drunk sailor who has lost the sense of direction, takes a random walk in onedimension.
- Suppose he takes N steps each of equal length l. Let each step be random, i.e. to the forward or backward direction. Each step has a probability of $1 / 2$ being in either direction.
- Now, we have to find the probability of the drunk person that he is at a distance x from the starting point after such a walk.

Let $P(m, N)$ be the probability that the person is at a point m steps away after N steps. The probability of any given sequence of N steps is $(1 / 2)^{\mathrm{N}}$.
where $W(m)$ is the number of distinct sequences that reach m after N steps.

To reach at the point m , some set of $n_{1}=\frac{1}{2}(N+m)$ steps out of N must be positive and the remaining
$n_{2}=\frac{1}{2}(N-m)$ steps must be negative. Therefore, the number of distinct sequences that reach m is -

$$
\begin{equation*}
W(m)=\frac{N!}{\left[\frac{1}{2}(N+m)!\right]\left[\frac{1}{2}(N-m)!\right]} \tag{ii}
\end{equation*}
$$

For large N, the exact form of Stirling's approx. is given by -

$$
N!=(2 \pi N)^{1 / 2} N^{N} e^{-N}
$$

$\ln N!=N \ln N-N-\frac{1}{2} \ln (2 \pi N)$
$\ln N!=\left(N+\frac{1}{2}\right) \ln N-N+\frac{1}{2} \ln 2 \pi$

Then,

$\ln P(m, N)=\left(N+\frac{1}{2}\right) \ln N-\frac{1}{2}(N+m+1) \ln \frac{1}{2}(N+m)-\frac{1}{2}(N-m+1) \ln \frac{1}{2}(N-m)-\frac{1}{2} \ln 2 \pi-N \ln 2$
since, $\mathrm{m} \ll \mathrm{N}$, then $\ln \left(1 \pm \frac{m}{N}\right)= \pm \frac{m}{N}-\frac{m^{2}}{2 N^{2}} \pm$.
using

$$
\ln \frac{1}{2}(N \pm m)=\ln \left(\frac{N}{2}\right)+\ln \left(1 \pm \frac{m}{N}\right)
$$

Therefore, from eq ${ }^{\mathrm{n}}$. (iv)

$\ln P(m, N)=\left(N+\frac{1}{2}\right) \ln N-\frac{1}{2}(N+m+1)\left(\ln N-\ln 2+\frac{m}{N}-\frac{m^{2}}{2 N^{2}}\right)-\frac{1}{2}(N-m+1)\left(\ln N-\ln 2-\frac{m}{N}-\frac{m^{2}}{2 N^{2}}\right)-\frac{1}{2} \ln 2 \pi-N \ln 2$

$$
\ln P(m, N) \approx-\frac{1}{2} \ln N+\ln 2-\frac{1}{2} \ln 2 \pi-\frac{m^{2}}{2 N^{2}}
$$

or,

$$
\begin{equation*}
P(m, N) \approx\left(\frac{2}{\pi N}\right)^{1 / 2} \exp \left(-\frac{m^{2}}{2 N}\right) \tag{vi}
\end{equation*}
$$

as $x=m l$ and $\mathrm{m}=\mathrm{n}_{1}-\mathrm{n}_{2}=\mathrm{n}_{1}-\left(\mathrm{N}-\mathrm{n}_{1}\right)=2 \mathrm{n}_{1}-\mathrm{N}$
So, the probability that the sailor is between x and $(x+d x)$ after N steps is -

$$
\begin{equation*}
P(x, N) d x=P(m, N) d m=P(m, N) \frac{d x}{2 l} \tag{vii}
\end{equation*}
$$

Here, $d x=2 l d m$ as m can take integral values separated by $\Delta m=2$.

Hence, the probability that a person is at a distance x after N steps is -

$$
P(x, N)=\left(2 \pi l^{2} N\right)^{-1 / 2} \exp \left(\frac{-x^{2}}{2 N l^{2}}\right)
$$

This is the normal or Gaussian distribution which is of the form

$$
\begin{equation*}
P(x)=(2 \pi)^{-1 / 2} \gamma^{-1} \exp \left(\frac{-x^{2}}{2 \gamma^{2}}\right), \int_{-\infty}^{+\infty} P(x) d x=1 \tag{ix}
\end{equation*}
$$

Let us assume that the sailor takes $N=n t$ steps in time t. Then, the probability of the sailor being in the interval $d x$ at x after time t is -

$$
\begin{equation*}
P(x) d x=\left(2 \pi l^{2} n t\right)^{-1 / 2} \exp \left(\frac{-x^{2}}{2 n t l^{2}}\right) d x \tag{x}
\end{equation*}
$$

The mean square distance travelled is given by the mean square fluctuation -

$$
\begin{align*}
& \overline{(\delta x)^{2}}=\overline{x^{2}}=\int_{-\infty}^{+\infty} x^{2} P(x) d x \\
& \overline{x^{2}}=\int_{-\infty}^{+\infty} x^{2}\left(2 \pi l^{2} n t\right)^{-1 / 2} \exp \left(\frac{-x^{2}}{2 l^{2} n t}\right) d x=l^{2} n t
\end{align*}
$$

Thus, a random walk is what particles execute when they diffuse and the particle diffusion coefficient (D) defined by -

$$
D=\frac{l^{2}}{2 \tau}
$$

where τ is the time taken for each step then $t=\tau N$
Therefore, the probability that the sailor will be within $d x$ at x at time t if he was at $x=0$ at $t=0$ is -

$$
\begin{equation*}
P(0,0 ; x, t) d x=(4 \pi D t)^{-1 / 2} \exp \left(\frac{-x^{2}}{4 D t}\right) d x \tag{xii}
\end{equation*}
$$

References: Further Readings

1. Statistical Mechanics by R.K. Pathria
2. Elementary Statistical Mechanics by Gupta \& Kumar
3. Statistical Mechanics by K. Huang
4. Statistical Mechanics by B.K. Agrawal and M. Eisner

Thank

For any questions/doubts/suggestions and submission of assignment
write at E-mail: neelabh@mgcub.ac.in

