Lecture-12 Characterization of Nanomaterials

(Structural Characterization, XRD)

(Ref: Guozhong Cao; Nanostructures & Nanomaterial: Synthesis, Properties & Applications)

Characterization and Properties of Nanomaterials

- Nanomaterials & Nanostructures are characterized by:
 - X-ray diffraction (XRD)
 - Various Electron Microscopy (EM)
 - (i) Scanning Electron Microscopy (SEM)

(ii) Transmission Electron Microscopy (TEM)

(iii) Scanning Probe Microscopy (SPM)

- Chemical Characterization Techniques
 - Optical Spectroscopy
 - Electron Spectroscopy
 - Ionic Spectrometry
- Relationships between physical properties and

Dimensions of nanomaterials are briefly discussed.

Structural Characterization

- Characterization of nanomaterials/nanostructures
 - Surface Analysis Techniques, &
 - Conventional Characterization Methods
- Similar to methods developed for bulk materials.

Example:

For nanoparticles, nanowires and thin films:

- XRD has been widely used for
 - Determination of Crystallinity
 - Crystal Structures, and
 - Lattice Constants

• SEM & TEM together with Electron Diffraction

- Used in characterization of Nanoparticles.

- Optical spectroscopy is used to determine
 - Size of Semiconductor Quantum Dots.
- SPM is relatively new characterization technique
 - Found wide applications in Nanotechnology.

- Two major members of SPM family are
 - Scanning Tunneling Microscopy (STM)
 - Atomic Force Microscopy (AFM)
- STM & AFM are surface image techniques & can produce
 - Topographic Images of surface
 - Atomic resolution in all three dimensions
 - Combining with appropriately designed attachments

- STM & AFM have broadened range of applications
 - Nanoindentation
 - Nanolithography
 - Patterned Self-Assembly.
- Almost all solid surfaces, can be studied with STM & AFM
 - Whether Hard or Soft
 - Electrically Conductive or non-Conductive
- Surfaces can be studied in Air or Vacuum or Liquid.

X-ray diffraction (XRD)

- XRD is very important techniques to address issues
 - Related to Crystal Structure of Solids
 - Lattice Constants and Geometry
 - Identification of Unknown Materials
 - Orientation of Single Crystals
 - Preferred Orientation of Polycrystals
 - Defects, Stresses, etc.

Bragg's Law

- X-rays (λ = 0.7-2 Å), incident on specimen, &
 - Diffracted by crystalline phases of specimen
 - In accordance to Bragg's law:
 - $\lambda = 2d \sin \theta$
 - 'd' is spacing between atomic planes
 - ' λ ' is X-ray wavelength.

- Intensity of diffracted X-rays is measured as
 - Function of the diffraction angle 20, &
 - Specimen's Orientation.
- Diffraction Pattern is used to identify
 - Specimen's Crystalline Phases, &
 - To measure its structural properties.

- Diffraction peak positions are accurately measured with XRD
 - Best method to characterize

(a) Homogeneous Strains

(b) Inhomogeneous Strains.

Homogeneous or Uniform Elastic Strain

- Shifts the diffraction peak positions.

• From shift in peak positions, one can calculate

- Change in d-spacing (Occurs due to change of lattice constants under strain)

- Inhomogeneous strains vary from
 - Crystallite to Crystallite

or

- Within a single crystallite
- This causes broadening of diffraction peaks &
 - Increases with sin θ .

- Peak broadening is also caused by
 - Finite size of crystallites
- Here the broadening is independent of sin θ
- When both crystallite size & inhomogeneous strain
 - Contribute to the peak width
- It can be separately determined by
 - Careful analysis of peak shapes

- If there is no In-Homogeneous strain,
 - Crystallite size, 'D', can be estimated from peak width
 - Using Scherrer's formula:

 $\mathsf{D} = \frac{\mathsf{K}\,\lambda}{\mathsf{B}\,\cos\theta_{\mathsf{B}}}$

Where; ' λ ' is the X-ray wavelength

'B' is full width half maximum (FWHM) (Diffraction Peak)

' θ_{B} ' is the diffraction angle, and

'K' is the Scherrer's constant (Order of unity for usual crystal)

- Nanoparticles often form twinned structures
- Therefore, Scherrer's formula may produce results
 - Different from the true particle sizes.
- In addition, X-ray diffraction only provides
 - Collective information of the particle sizes, &
 - Usually requires a sizable amount of powder.

It should be noted that estimation would work

- Only for very small particles

- Technique is very useful in
 - Characterizing nanoparticles
- Similarly, film thickness can also be estimated for
 - Epitaxial & highly textured thin films with XRD

Powder X-ray diffraction of a series of InP nanocrystal sizes. The stick spectrum gives the bulk reflections with relative intensities. [A.A. Guzelian et.al., J. Phys. Chem., 100(1996)7212] • Disadvantages of XRD, (Compared to Electron Diffraction)

- Low intensity of diffracted X-rays

- Particularly for low-Z materials
- XRD is more sensitive to high-Z materials
- For low-Z materials

- Neutron or Electron diffraction is more suitable

- Typical intensities for Electron Diffraction are
 - 10⁸ times larger than XRD
 - Because of small diffraction intensities
- XRD generally requires large specimens
- Information acquired is an average over a large amount of material

Prof. S. K. Tripathi

Department of Physics School of Physical Sciences Mahatma Gandhi Central University

Course Name: Nano Materials and Applications Course Code: PHYS3024