B.Sc. (Hons.) Biotechnology Core Course 13: Basics of Bioinformatics and Biostatistics (BIOT 3013)

<u>Unit 3:</u>

Test of significance: Z-test, t-test and Chi-square test

Dr. Satarudra Prakash Singh Department of Biotechnology Mahatma Gandhi Central University, Motihari

Test of significance

- It is used in estimating population parameters using sample data.
- For example, an administrator of a big hospital is interested in the knowing the mean age of patients admitted during the last year.
- The administrator draw a random sample of size n from the patient population and compute the average \bar{x} , which he use as a point estimate of μ .

Test of significance

- Because random sampling involves chance, then it can't be expected to be equal to μ.
- The value of may \overline{x} be greater than or less than μ .
- Statistical inference (test of significance) is the method by which we can reach to a conclusion about a population on the basis of the sample information drawn from the same population.

Hypotheses testing

about population parameters using sample statistics

- It is a statement about one or more populations.
- For example, a hospital administrator may want to test the hypothesis that the average length of stay of patients admitted to the hospital is 5 days.

Hypothesis testing

- There are two hypotheses involved in hypothesis testing
- **1. Null hypothesis** H_0 : It is the hypothesis to be tested .
- 2. Alternative hypothesis H_A : It is a statement of what we believe is true if our sample data provided reason to reject the null hypothesis.

Hypothesis Testing steps about the mean of a population

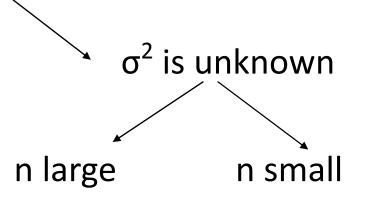
- **1.Data collection**: find out the determine variable, sample size (n), sample mean(\bar{x}), population standard deviation (σ) or sample standard deviation (s) if they are unknown.
- **2. Assumptions :** Now we have two cases:
- <u>Case1</u>: Population is normally distributed with known or unknown variance (sample size n may be small or large),
- <u>Case2</u>: Population is not normal with known or unknown variance (n is large i.e. n≥30).

- 3.Hypotheses: we have to test three cases
- Case I: we want to test that the population mean is different than 50.
- $H_0: \mu = \mu_0$
- $H_A: \ \mu \neq \ \mu_0$
- Case II : we want to test that the population mean is greater than 50.

 $H_0: \mu = \mu_0$

- H_A : $\mu > \mu_0$
- Case III : we want to test that the population mean is less than 50.

 $\mathsf{H}_{0:} \ \mu = \mu_0$


 H_A : $\mu < \mu_0$

4.Test Statistic:

• <u>Case 1</u>: Population is normal distributed.

 σ^2 is known *(* n large or small)

τ7

$$Z = \frac{X - \mu_{o}}{\sigma / \sqrt{n}} \qquad \qquad Z = \frac{\overline{X} - \mu_{o}}{s / \sqrt{n}} \qquad \qquad t = \frac{\overline{X} - \mu_{o}}{s / \sqrt{n}}$$

• <u>Case2</u>: If population is <u>not normal</u> and <u>n is large.</u> i)If σ^2 is known ii) If σ^2 is unknown

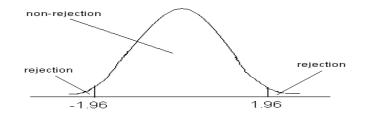
$$Z = \frac{\overline{X} - \mu_{\circ}}{\sigma / \sqrt{n}}$$

$$Z = \frac{X - \mu_{o}}{s / \sqrt{n}}$$

Text Book : Basic Concepts and Methodology for the Health Sciences

5.Decision Rule on the basis of level of significance (α)

- i) If $H_A: \mu \neq \mu_0$
- Reject H₀ if Z >Z_{1- $\alpha/2$} or Z< Z_{1- $\alpha/2$} (when use Z test)
- <u>or</u> Reject H $_0$ if T >t_{1- $\alpha/2$,n-1} or T< t_{1- $\alpha/2$,n-1} (when use t-test)
- ii) If $H_A: \mu > \mu_0$ Reject H_0 if $Z > Z_{1-\alpha}$ (when use Z - test) <u>or</u> Reject H_0 if $T > t_{1-\alpha,n-1}$ (when use t - test)
- iii) If $H_A: \mu < \mu_0$
- Reject H_0 if Z< $Z_{1-\alpha}$ (when use Z test)
- <u>Or</u> Reject H_0 if T<- $t_{1-\alpha,n-1}$ (when use t test)
- **6. Decision:** If we reject H_0 , we can conclude that H_A is true.


- **7. An alternative decision rule** can be applied using the p- value.
- i) If the p-value is less than or equal to α , we reject the null hypothesis ($p \le \alpha$).
- ii) If the p-value is greater than α , we <u>do not</u> reject the null hypothesis (p > α).

Example 1

 Suppose a researcher is interested in the mean age of a certain population. A random sample of 10 individuals drawn from the target population that has a mean of 27 years. Assuming the population is normally distributed with variance of 20. Can we conclude that the mean is different from 30 years? (α =0.05). If the p-value is 0.0340, how can we use it in making a decision?

Solution

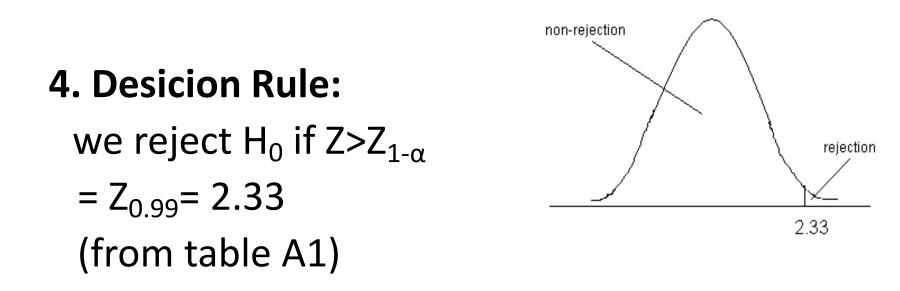
1-Data: variable is age, n=10, \overline{x} =27, σ^2 =20, α =0.05

- **2-Hypotheses:** H_0 : μ =30; H_A : $\mu \neq$ 30
- **3-Test Statistic:** $Z = \frac{\overline{X} \mu_{o}}{\sigma / \sqrt{n}} = \frac{27 30}{\sqrt{\frac{20}{10}}}$
- 4.Decision Rule: The alternative hypothesis is true
- H_A : $\mu \neq 30$; hence we reject $H_{0.}$
- if Z cal. > $Z_{1-0.025/2} = Z_{0.975}$ or Z cal. < - $Z_{1-0.025/2} = - Z_{0.975}$
- Z_{0.975}=1.96(from standard table A1)

Can we conclude that μ <30

Decision Rule: Reject H_0 if Z< Z $_{\alpha}$, where non-rejection Z_{α} = -1.645 (from table A1 at α = 5%). rejection -1645 **Decision**: Thus, we can conclude that the

population mean is smaller than 30.


Example 2

Among 157 African-American men, the sample mean systolic blood pressure was 146 mm Hg with a standard deviation of 27. Assuming the population distribution is not normal, can we conclude that the mean systolic blood pressure for a population of African-American is greater than 140 mm Hg at α=0.01.

Solution

- 1. Data: Variable is systolic blood pressure, n=157, sample mean=146, s=27, $\alpha=0.01$.
- 2. Hypotheses: H₀ :μ=140; H_A: μ>140

3.Test Statistic:
•
$$Z = \frac{\overline{X} - \mu_{\circ}}{\frac{s}{\sqrt{n}}} = \frac{146 - 140}{\frac{27}{\sqrt{157}}} = \frac{6}{2.1548} = 2.78$$

5. Decision: Hence, we can conclude that the mean systolic blood pressure for a population of African-American is greater than 140 mm Hg.

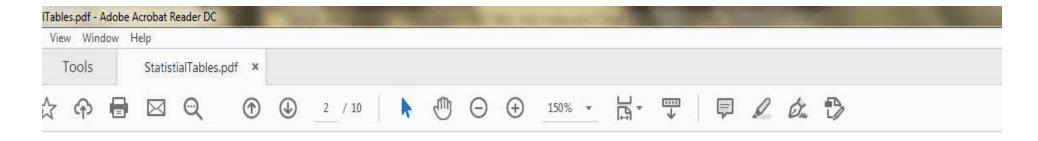
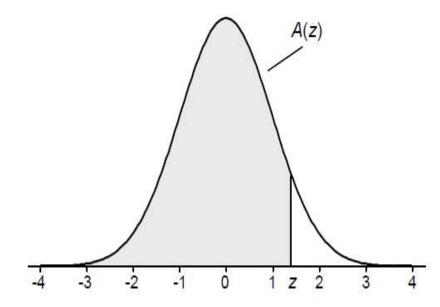



TABLE A.1

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

Z	A(z)	
1.645	0.9500	Lower limit of right 5% tail
1.960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

StatistialTables.pdf - Adobe Acrobat Reader DC													
File Edit View Window Help													
Home Tools StatistialTables.pdf	f×												
🖺 🕁 🕈 🖶 🖾 🔍	٠	2 / 10	R.	Θ	\oplus	100%	• 🛱	• •	Ę	l da	Ð		
	z 0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09			
	0.0 0.5		0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359			
	0.1 0.5		0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753			
	0.2 0.5		0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141			
	0.3 0.6		0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517			
	0.4 0.6		0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879			
	0.5 0.6		0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224			
	0.6 0.7 0.7 0.7		0.7324 0.7642	0.7357 0.7673	0.7389 0.7704	0.7422 0.7734	0.7454 0.7764	0.7486 0.7794	0.7517 0.7823	0.7549 0.7852			
	0.8 0.7		0.7042	0.7967	0.7995	0.8023	0.8051	0.8078	0.7825	0.8133			
	0.9 0.8		0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389			
	1.0 0.8		0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621			
	1.1 0.8		0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830			
	1.2 0.8		0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015			
	1.3 0.9		0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177			
	1.4 0.9		0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319			
	1.5 0.9		0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441			
	1.6 0.9		0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545			
*	1.7 0.9		0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633			
	1.8 0.9		0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706			
	1.9 0.9		0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767			
	2.0 0.9		0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817			
	2.1 0.9		0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857			
	2.2 0.9 2.3 0.9		0.9868	0.9871 0.9901	0.9875	0.9878 0.9906	0.9881 0.9909	0.9884	0.9887 0.9913	0.9890			
	2.3 0.9		0.9898	0.9901	0.9904	0.9900	0.9909	0.9932	0.9913	0.9916			
	2.5 0.9		0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952			
	2.6 0.9		0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964			
	2.7 0.9		0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974			
	2.8 0.9		0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981			
	2.9 0.9		0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986			
	3.0 0.9		0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990			
	3.1 0.9	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993			
	3.2 0.9		0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995			
	3.3 0.9		0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997			
	3.4 0.9		0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998			
	3.5 0.9	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998			

Student's t-test

- It is used to test the null hypothesis that there is no difference between the means of the two groups.
- There are three cases:
- i) one-sample t-test : To test if a sample mean (as an estimate of a population mean) differs significantly from a given population mean.
- The formula for one sample *t*-test is =(x- u)/SE
- Where x = sample mean, u = population mean and SE = standard error of mean

ii) The unpaired t-test

To test if the population means estimated by two independent samples differ significantly.

The formula for unpaired t-test is: t=(X1-X2)/SE

where X1-X2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

iii) The paired t-test

To test if the population means estimated by two dependent samples differ significantly. Usually, it is used when measurements are made on the same subjects before and after a treatment.

The formula for paired t-test is: d/SE

where d is the mean difference and SE denotes the standard error of this difference.

	1	w Win																		
Home Tools				StatistialTables.pdf ×																
Ð	☆	ዏ	0		୍	٢		3	/ 10	N	0	Θ	\oplus	100% *	∎.	₩	₽ ⊿	Ó.	₿	
				Ŀ									TABLE A	.2						
											t Di	stribut	tion: Critic	cal Values	of t					
					Significance level															
							Degree. freedon		Two-tai One-tai			10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%			
							1 2				2.	.314 .920	12.706 4.303	31.821 6.965	63.657 9.925	318.309 22.327	636.619 31.599			
							3 4 5				2	.353 .132 .015	3.182 2.776 2.571	4.541 3.747 3.365	5.841 4.604 4.032	10.215 7.173 5.893	12.924 8.610 6.869			
							6					.943	2.447	3.143	3.707	5.208	5.959			
							7					.894 .860	2.365 2.306	2.998 2.896	3.499 3.355	4.785 4.501	5.408 5.041			
							8 9					.833	2.262	2.821	3.250	4.297	4.781			
							10				1.	812	2.228	2.764	3.169	4.144	4.587			
							11					796	2.201	2.718	3.106	4.025	4.437			
							12					782	2.179	2.681	3.055	3.930	4.318			
							13					771	2.160	2.650	3.012	3.852	4.221			
							14 15					.761 .753	2.145 2.131	2.624 2.602	2.977 2.947	3.787 3.733	4.140 4.073			
							16					746	2.120	2.583	2.921	3.686	4.015			
							17					740	2.110	2.567	2.898	3.646	3.965			
							18					734	2.101	2.552	2.878	3.610	3.922			
							19					729	2.093	2.539		3.579	3.883			
							20				1	.725	2.086	2.528	2.845	3.552	3.850			
							21				1	721	2.080	2.518	2.831	3.527	3.819			
							22					717	2.074	2.508		3.505	3.792			
							23					714	2.069	2.500		3.485	3.768			
							24					711	2.064	2.492		3.467	3.745			
							25				1.	708	2.060	2.485	2.787	3.450	3.725			

StatistialTables.pdf - Adobe	Acrobat Reader DC	The Mater Tank		PROPERTY AND INCOME.	and the second distance	The summer was
File Edit View Window	Help					
Home Tools	StatistialTables.pdf ×					
🖺 🕁 🕈 🖶		3 / 10 🕨 🖑 Θ	⊕ _100% ▪		₽ <i>L b</i> .	Ð
	26 27 28 29 30 32 34 36 38 40 42 44 46 48 50 60 70 80 90 100 120 150 200 300 400 500 600 ∞	1.706 1.703 1.701 1.699 1.697 1.694 1.691 1.688 1.688 1.684 1.684 1.682 1.680 1.679 1.677 1.676 1.671 1.667 1.664 1.662 1.660 1.658 1.655 1.655 1.653 1.655 1.653 1.648 1.648	2.056 2.479 2.052 2.473 2.048 2.467 2.045 2.462 2.042 2.457 2.037 2.449 2.032 2.441 2.028 2.434 2.024 2.429 2.021 2.423 2.018 2.418 2.015 2.414 2.013 2.410 2.011 2.407 2.009 2.403 2.000 2.390 1.994 2.381 1.990 2.374 1.987 2.368 1.984 2.364 1.980 2.358 1.976 2.351 1.968 2.339 1.966 2.336 1.965 2.334 1.964 2.333 1.960 2.326	1.41 • 2.779 3.435 2.771 3.421 2.763 3.408 2.756 3.396 2.750 3.385 2.738 3.365 2.728 3.348 2.719 3.333 2.712 3.319 2.704 3.07 2.698 3.296 2.692 3.286 2.692 3.286 2.687 3.277 2.682 3.269 2.678 3.261 2.660 3.232 2.648 3.211 2.639 3.195 2.632 3.183 2.626 3.174 2.617 3.160 2.609 3.145 2.601 3.131 2.592 3.118 2.588 3.111 2.584 3.104 2.576 3.090	3.707 3.690 3.674 3.659 3.646 3.622 3.601 3.582 3.566 3.551 3.538 3.526 3.515 3.505 3.496 3.460 3.435 3.416 3.402 3.390 3.373 3.357 3.340 3.323 3.315 3.310 3.307 3.291	

Chi-square-test

It is used to analyze the categorical data.

It compares the frequencies and tests whether the observed data differ significantly from the expected data if there were no differences between groups (H0).

It is calculated by the sum of the squared difference between observed (O) and the expected (E) data divided by the expected (E) data.

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

The Decision Rule

- The quantity χ-square will be small if the observed and expected frequencies are close together and will be large if the differences are large.
- The computed value of χ-square is compared with the tabulated value with degrees of freedom = (r-1)(c-1) where r is the number of rows and c is the number of columns.
- Reject H0, if χ-square is greater than or equal to the tabulated χ-square for the chosen value of α.

🔊 Stati	stialTable	s.pdf - Ado	be Acrob	at Reade	r DC						-	-		-	the M	100			-	- 21	a lange
File E	dit View	Window	Help																		
Hon	ne T	ools	Sta	atistialTa	bles.pdf	×															
	☆	ሱ [3 0	2	ᠿ	٩	10 / 1	10	N		Θ	\oplus	100%	*	Ľ₽ *	₩	Þ	Q	Ó.	₿
													TABLE	A.4							
										χ ² (C	hi-Squa	ared) Di	stribut	tion: Criti	ical Val	ues of	x²				
													Sig	znificance	level						
										Deg free	grees of dom	5%		1%		0.1%					
											1	3.84	1	6.635		10.828					
											2	5.99	1	9.210		13.816					
											3	7.81	5	11.345		16.266					
											4	9.48	8	13.277		18.467					
											5	11.07	0	15.086		20.515					
b.											6	12.59	2	16.812		22.458					
											7	14.06	7	18.475		24.322					
											8	15.50	7	20.090		26.124					
											9	16.91	9	21.666		27. <mark>8</mark> 77					
											10	18.30	7	23.209		29.588					

References

- Biostatistics: Basic Concepts and Methodology for the Health Sciences, 10ed, ISV. Wayne W. Daniel, Chad L. Cross. ISBN: 9788126551897.954 pages.
- Ali Z, Bhaskar SB. Basic statistical tools in research and data analysis. Indian J Anaesth. 2016 Sep;60(9):662-669. doi: 10.4103/0019-5049.190623. Erratum in: Indian J Anaesth. 2016 Oct;60(10):790. PMID: 27729694; PMCID: PMC5037948.

Thank you.

Email: sprakashsingh@mgcub.ac.in