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So far, we have dealt with the laws of thermodynamics (including

Thermodynamic potentials, Phase transitions, Carnot’s cycle,

Properties of He I and He II etc.) and basic postulates of

Statistical Mechanics (highlighting concept of phase space,

Microstates & macrostates, Ensemble theory, Boltzmann entropy

relation).

Before the advent of quantum mechanics, Maxwell, Boltzmann,

Gibbs etc, applied statistical methods with the help of classical

physics. These methods are collectively known as Classical

statistics or Maxwell-Boltzmann (MB) Statistics.
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These statistics were successful in explaining pressure,

temperature etc. of gaseous systems but couldn’t explain some

experimental results like the energy distribution in case of black-

body radiation, specific heat at low temperature etc.

Such phenomena were successfully explained by S.N. Bose,

Albert Einstein, Enrico Fermi, P.A. Dirac where they had made

use of some new statistics with the help of newly discovered

quantum theories.

These new statistics are known as Quantum Statistics and can be

divided as:

i. Bose-Einstein (BE) statistics

ii. Fermi-Dirac (FD) statistics



Maxwell-Boltzmann (MB) Statistics
The basic postulates associated with the MB statistics are-

• The particles of the system are identical and distinguishable.

• The phase space can be divided into a very large number of cells.

• There is no restriction on the number of particles which can occupy a

single phase cell.

• The available volume of the phase space cell can be very small and may

even approach zero.

• The total number of particles in the system remains constant.

• The total energy of the system remains constant. 4
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Let us consider a system composed of n distinguishable, non-

interacting particles. Out of these n particles, n1, n2,…...ni…..nk

represent number of molecules in the energy levels ε1, ε2…. εi….. εk,

respectively corresponding to g1, g2…..gi……gk cells. The

thermodynamic probability for the macrostate (n1, n2,…...ni…..nk)

according to classical statistics is given by -

Taking natural logarithm and applying Stirling’s approx. ln(x!)=xln(x)-x, 

we get,
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We have the constraints:
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Using the method of Lagrange’s undetermined multipliers and after 

solving, we get  
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This equation holds only if,

Now, the Maxwell-Boltzmann distribution function is given by,

Occupation index,

This equation gives the number of gas molecules in the ith cell and
known as Maxwell-Boltzmann law of energy distribution.

simply,

where,
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This Boltzmann distribution

applies to systems which have

distinguishable particles and N,

V and U are fixed. The Maxwell-

Boltzmann Distribution is

applicable only to dilute gases.
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The quantity Z represents the sum of the Boltzmann factor

Over all the accessible states and is called the partition function (derived

from German term Zustandssummae). The quantity Z indicates how the gas

molecules of an assembly are distributed or partitioned among the various

energy levels. The distribution function proportional to the Boltzmann factor

is known as the canonical distribution.
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Evaluation of Constants: g, α and β

• To evaluate , let us imagine a very small interval of
energy lying between ε and (ε+dε). If n(ε) denotes the
number of molecules lying in the energy interval (ε-
1/2) and (ε+1/2), then

where gives the number of cells in the phase space
corresponding to unit energy interval.

Now, 

where and gives the number of molecules in unit
momentum interval between (p-1/2) and (p+1/2).
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Number of molecules in the momentum interval 
p and (p+dp) is given by

Now,

After substitution, we get
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Evaluation of α

Let pmax be the maximum value of momentum that 
any molecule can have

After integration, we get

Finally, we get
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Evaluation of β
Since,

In terms of energy, 

This relation gives the number of molecules lying in
the energy interval ε and (ε+d ε) in terms of β.

So, total energy of these molecules = ε n(ε) dε

Hence, total energy of the system consisting of all
the molecules,
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For an ideal gas, each molecule possesses an average K.E. = 3/2kT, 
where k is Boltzmann’s constant.

Therefore, total energy of n molecules = 3/2nkT

13

kT
orkT

n
U

1

2

3

2

3
 



1. Maxwell-Boltzmann’s law of distribution of energies:







de
kT

n
dn kT











 2/1

2/3
12

)(



14

2. Maxwell-Boltzmann’s law of distribution of momentum:

3. Maxwell-Boltzmann’s law of distribution of speeds:

Put p = mv

The most probable speed vmp of a particle is that value of the speed v

for which the number of particles with speed between v and (v+dv) is a

maximum,
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which gives,

Root mean square (rms) speed of a system of
particles is that speed whose square is the average
of the squares of the speeds of the particles.
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The average thermal speed of a particle is-

Thus,  

16

m

kT

dvvn

dvvnv

v
8

)(

)(

0

0 








mprms vvv 



References: Further Readings

1. Statistical Mechanics by R.K. Pathria

2. Statistical Mechanics by K. Huang

3. Statistical Mechanics by B.K. Agrawal and M. Eisner

4. Thermal Physics (Kinetic theory, Thermodynamics and

Statistical Mechanics) by S.C. Garg, R.M. Bansal and C.K.

Ghosh

5. Heat, Thermodynamics and Statistical Physics by C.L. Arora

17



Assignment
1) Use statistical definition of entropy to show that the difference in

entropy between a state of volume Vi and a state of volume Vf

(temperature and number of molecules remains constant) is equal

to nR log(Vf/Vi).

2) Consider a system of N paramagnetic atoms each having

magnetic moments M, are placed in magnetic field (B). N atoms

are aligned parallel to B and (N-n) atoms are aligned anti-parallel

to B. Then, find (i) internal energy of the system, (ii) entropy of

the system and (iii) thermodynamic temperature of the system.

3) An electron gas obeys the M-B statistics. Calculate the average

thermal energy (in eV) of an electron in the system at room

temperature (300 K).
18



4) Six distinguishable particles are distributed over three non-

degenerate levels of energies 0, ε and 2ε. Calculate the total

number of microstates of the system. Find the total energy of

the distribution for which the probability is a maximum.

5) Calculate the fraction of oxygen molecules within 1% of the

most probable velocity at N.T.P. What is the effect of

changing (i) the gas to hydrogen & (ii) the temperature to

500ºC?

6) A system can take only three different energy states ε1=0,

ε2=1.38×10-21 joule and ε3=2.76×10-21 joule. These states occur

in 2, 5, 4 different ways, respectively. Deduce the probability

that at temperature 100 K, the system may be (i) in one of the

microstates of energy, ε3 and (ii) in ground state ε1.

(k=1.38×10-23 joule/K). 19
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For any questions/doubts/suggestions and submission of 

assignment 

write at E-mail: neelabh@mgcub.ac.in

mailto:neelabh@mgcub.ac.in

