UNIT V-Part I

Catalysis by Organometallic Compounds

B.Sc. (H) Chemistry

Dr Rajanish N. Tiwari
Department of Chemistry
Mahatma Gandhi Central University

SYLLABUS of UNIT V

Catalysis by Organometallic Compounds

Study of the following industrial processes and their mechanism:

1. Alkene hydrogenation (Wilkinsons Catalyst)

2. Hydroformylation (Co salts)

3. Wacker Process

4. Synthetic gasoline(Fischer Tropsch reaction)

5. Synthesis gas by metal carbonyl complexes

1.Alkene Hydrogenation (Wilkinsons Catalyst)

$$+$$
 H_2 $\xrightarrow{Catalyst}$ R CH_3

The most commonly used catalyst is the Wilkinson's Catalyst

- Many alkenes are hydrogenated with hydrogen at 1 atm pressure or less.
- Wilkinson's catalyst is highly sensitive to the nature of the phosphine ligand and the alkene substrate.
- Analogous catalysts with alkyl phosphine ligands are inactive.
- Highly hindered alkenes and ethylene are not hydrogenated by the catalyst.

1. Alkene Hydrogenation (Wilkinsons Catalyst)

2. Hydroformylation

- Both cobalt and rhodium complexes are used as catalysts.
- Alkene isomerization, alkene hydrogenation and formation of branched aldehydes are the possible side reactions.
- Cobalt catalysts operate at 150 °C and 250 atm, whereas Rhodium catalysts operate at moderate temperatures and 1 atm.
- Rhodium catalysts promotes the formation of linear aldehydes. Cobalt catalysts do so if modified with alkylphosphine ligands.

$$\begin{array}{c|c}
CO & H \\
OC & CO \\
OC & CO \\
OC & CO
\end{array}$$

$$\begin{array}{c|c}
CO & Ph_3P & PPh \\
Ph_3P & CO
\end{array}$$

$$\begin{array}{c|c}
CO & Ph_3P & CO
\end{array}$$

2. Hydroformylation

References:

- Shriver & Atkins' Inorganic Chemistry, 5th Edition
- Miessler, Gary L. Inorganic chemistry. Fifth edition / Gary L. Miessler, St. Olaf College, Paul J. Fischer, Macalester College.
- Wikipedia

THANK YOU