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Partition Function of a Diatomic
Molecule

« Consider a diatomic molecule inside a box at temperature T,
so the energy of the of i microstate of this molecule can be

expressed as —

E=Ey +E T iy TEFE, wevrninnnnn. (1)

Figure: Diatomic molecule having
Identical atoms

where g, IS the translational energy of the centre of mass of the molecule, ¢,
IS the energy associated with the rotation of the constituent atoms in the
molecule about the centre of mass, ¢, IS the energy associated with the
vibrations of the two atoms along the line joining them, ¢, Is the energy of
atomic electrons and ¢, is the energy of the atomic nucleus.



So, the partition function of a single diatomic molecule can be

written as - Zo= e (ii)
(states)
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where Z,,, Z..., Zi,, Z, and Z_ denote the translational, rotational,

vibrational, electronic and nuclear partition functions
respectively.

Consider a gas consisting of N molecules and each particle is
free to move throughout the volume. For a perfect gas, as the
particles are indistinguishable, partition function is-
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where Z is single particle partition function.



Translational Motion: Consider a single diatomic molecule. It
will have three translational degrees of freedom. Consider a
molecule of mass m enclosed in a rectangular box of sides a,
b and ¢ with volume abc. The translational energy iIs —
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Therefore, one particle translational partition function is -
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After solving, we get the translational partition function
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So, partition function for a gas of N diatomic molecules is —

3N /2 ..
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Total translational energy of N diatomic molecules is
E, = kKT? olnZ, :g NKT

Rotational Motion: The energy level of a diatomic molecule
according to a rigid rotator model is given by,

~J(J+Dh?
rot 87°1
where | Is moment of inertia and J is rotational quantum number.
The rotational partition function is

g, e —J(J +Dh?
— =Tt 872 IkT




Rotational levels are degenerate and this degeneracy arises due to

space quantization of angular momentum. There are (2J+1)
allowed orientations. So, g, = (2J+1)

~J(J +1)h’ J(J+1)6,
:Z(ZJ +1)exp( T j:;(z\] +1) exp ( - tj ........ (viii)
2
Where 6., = —— Is the rotational temperature.
871k

Case |: High temperature limit: When T >> 0
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After solving, we get Lot = ' ﬂhz
For a gas of N diatomic molecules,
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The mean energy of the gas will be
E —KT? oinZ,,

= NkT

Contribution to entropy due to rotational motion of N diatomic
molecules Is -
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Contribution to specific heat due to rotational motion of N
diatomic molecules is —
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The Helmholtz free energy due to rotational motion of N
diatomic molecules is —
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Case 11: Low temperature limit: When T << 0,
Rotational partition function can be written as —

Z. =1+3e?%/T 1 5g™%0%/T 4

At low temperatures, thermal energy (kT) of the system is not
sufficient enough to take the molecules to higher rotational
levels.

» — Rotational motion disappears at low temperatures.

» The rotational partition function for homo-nuclear diatomic
molecule is one half of the rotational partition function for
hetero-nuclear diatomic molecules. This difference is
generally expressed in terms of symmetry number, o. It
specifies the number of indistinguishable orientations that a
molecule have.

» For a homo-nuclear diatomic molecule, c=2 whereas for
hetero-nuclear diatomic molecule, o=1. Accordingly, we
divide the rotational partition function by o.




Vibrational Motion: A diatomic molecule has only one degree
of freedom corresponding to the vibrational motion of the
nuclel along the axis joining them.

Vibrational motion of atoms bound in a molecule can be taken to
be nearly simple harmonic. The energy level of a linear simple
harmonic oscillator are non-degenerate and vibrational energy
of a diatomic molecule is given by —

E\in =(n+%)hv ,n=0,12.......
So, the vibrational partition function can be written as —
hv
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After further simplification and neglecting higher order terms, we
get




Vibrational energy: The vibrational energy of a gas of N
diatomic molecules is —
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Helmholtz free energy:
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Specific heat at constant volume:
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This suggests that vibrational motion gets frozen at low
temperatures.
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Electronic and Nuclear Partition
functions

* Molecules can exist with electrons excited to states higher than

the ground state. The energy spacings of these states vary in
iIrregular manner. So, It IS not possible to give a general

expression for Z..

« At ordinary temperatures, most of the molecules are usually In
their ground state whose energy can be taken as zero. Thus,

Z, =0, )+, expi{—Be(€)}+....
Zo=04(8) o, (X)

where g, (e) Is the degeneracy of the electronic ground state.



* The nuclear energy can be taken to be zero. Except in atomic
explosions, the nuclel are not excited thermally to states above
their ground state. Thus,

Z,=0,(N,S) s, (x1)

where, g,(n, s) Is the nuclear spin degeneracy.

* If in a diatomic molecule, nuclei have spins s, and s, then,

d,-(N,s) =(2s, +1)(2s, +1)



Assignment

 Use the concept of partition function
— to determine the specific heat capacity of Hydrogen.

— to determine the specific heat capacity of Solids.
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Thank

For any questions/doubts/suggestions and submission of
assignment
write at E-mail: neelabh@mgcub.ac.in

Yo

A

-

16


mailto:neelabh@mgcub.ac.in

